Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Epigenet ; 8(1): dvac023, 2022.
Article in English | MEDLINE | ID: mdl-36518876

ABSTRACT

Acute environmental stressors such as short-term exposure to pollutants can have lasting effects on organisms, potentially impacting future generations. Parental exposure to toxicants can result in changes to the epigenome (e.g., DNA methylation) that are passed down to subsequent, unexposed generations. However, it is difficult to gauge the cumulative population-scale impacts of epigenetic effects from laboratory experiments alone. Here, we developed a size- and age-structured delay-coordinate population model to evaluate the long-term consequences of epigenetic modifications on population sustainability. The model emulated changes in growth, mortality, and fecundity in the F0, F1, and F2 generations observed in experiments in which larval Menidia beryllina were exposed to environmentally relevant concentrations of bifenthrin (Bif), ethinylestradiol (EE2), levonorgestrel (LV), or trenbolone (TB) in the parent generation (F0) and reared in clean water up to the F2 generation. Our analysis suggests potentially dramatic population-level effects of repeated, chronic exposures of early-life stage fish that are not captured by models not accounting for those effects. Simulated exposures led to substantial declines in population abundance (LV and Bif) or near-extinction (EE2 and TB) with the exact trajectory and timeline of population decline dependent on the combination of F0, F1, and F2 effects produced by each compound. Even acute one-time exposures of each compound led to declines and recovery over multiple years due to lagged epigenetic effects. These results demonstrate the potential for environmentally relevant concentrations of commonly used compounds to impact the population dynamics and sustainability of an ecologically relevant species and model organism.

2.
Environ Sci Technol ; 54(21): 13849-13860, 2020 11 03.
Article in English | MEDLINE | ID: mdl-32989987

ABSTRACT

Many pollutants cause endocrine disruption in aquatic organisms. While studies of the direct effects of toxicants on exposed organisms are commonplace, little is known about the potential for toxicant exposures in a parental (F0) generation to affect unexposed F1 or F2 generations (multigenerational and transgenerational effects, respectively), particularly in estuarine fishes. To investigate this possibility, we exposed inland silversides (Menidia beryllina) to environmentally relevant (low ng/L) concentrations of ethinylestradiol, bifenthrin, trenbolone, and levonorgestrel from 8 hpf to 21 dph. We then measured development, immune response, reproduction, gene expression, and DNA methylation for two subsequent generations following the exposure. Larval exposure (F0) to each compound resulted in negative effects in the F0 and F1 generations, and for ethinylestradiol and levonorgestrel, the F2 also. The specific endpoints that were responsive to exposure in each generation varied, but included increased incidence of larval deformities, reduced larval growth and survival, impaired immune function, skewed sex ratios, ovarian atresia, reduced egg production, and altered gene expression. Additionally, exposed fish exhibited differences in DNA methylation in selected genes, across all three generations, indicating epigenetic transfer of effects. These findings suggest that assessments across multiple generations are key to determining the full magnitude of adverse effects from contaminant exposure in early life.


Subject(s)
Endocrine Disruptors , Water Pollutants, Chemical , Animals , Endocrine Disruptors/toxicity , Ethinyl Estradiol/toxicity , Fishes , Reproduction , Water Pollutants, Chemical/toxicity
3.
PeerJ ; 7: e6156, 2019.
Article in English | MEDLINE | ID: mdl-30643694

ABSTRACT

Aquatic organisms inhabiting polluted waterways face numerous adverse effects, including physiological disruption by endocrine disrupting compounds (EDCs). Little is known about how the temperatures associated with global climate change may influence the response of organisms exposed to EDCs, and the effects that these combined stressors may have on molecular endpoints such as gene expression. We exposed Menidia beryllina (inland silversides) to environmentally relevant concentrations (1 ng/L) of two estrogenic EDCs (bifenthrin and 17α-ethinylestradiol; EE2) at 22 °C and 28 °C. We conducted this experiment over multiple generations to better understand the potential effects to chronically exposed populations in the wild. We exposed adult parental fish (F0) for 14 days prior to spawning of the next generation. F1 larvae were then exposed from fertilization until 21 days post hatch (dph) before being transferred to clean water tanks. F1 larvae were reared to adulthood, then spawned in clean water to test for further effects of parental exposure on offspring (F2 generation). Gene expression was quantified by performing qPCR on F0 and F1 gonads, as well as F1 and F2 larvae. We did not detect any significant differences in the expression of genes measured in the parental or F1 adult gonads. We found that the 28 °C EE2 treatment significantly decreased the expression of nearly all genes measured in the F1 larvae. This pattern was transferred to the F2 generation for expression of the follicle-stimulating hormone receptor (FSHR) gene. Expression of 17ß-hydroxysteroid dehydrogenase (17ß-HSD) and G protein-coupled receptor 30 (GPR30) revealed changes not measured in the previous generation. Effects of the bifenthrin treatments were not observed until the F2 generation, which were exposed to the chemicals indirectly as germ cells. Our results indicate that effects of EDCs and their interactions with abiotic factors, may not be adequately represented by singular generation testing. These findings will contribute to the determination of the risk of EDC contamination to organisms inhabiting contaminated waterways under changing temperature regimes.

4.
Sci Rep ; 7(1): 9310, 2017 08 24.
Article in English | MEDLINE | ID: mdl-28839182

ABSTRACT

Understanding the combined effects of anthropogenic impacts such as climate change and pollution on aquatic ecosystems is critical. However, little is known about how predicted temperature increases may affect the activity of endocrine disrupting compounds (EDCs), particularly in species with plasticity in sex determination. We investigated the effects of a concomitant increase in temperature and exposure to estrogenic EDCs on reproduction and development in an estuarine model organism (Menidia beryllina) across multiple generations. Parents (P) were exposed to environmental levels of the estrogenic insecticide bifenthrin or ethinylestradiol (EE2) at 22 °C and 28 °C for 14 days prior to the initiation of spawning trials. Embryos in the F1 generation were exposed to EDCs until 21 days post hatch (dph), reared to adulthood in clean water at elevated temperatures, and spawned. F1 sex ratios were significantly influenced by elevated temperature and EDCs, potentially altering adaptive development. We also observed fewer viable offspring and increased developmental deformities in the F1 and F2 generations, with a greater impact on F2 juveniles. These findings enhance our understanding of responses to EDCs in the context of climate change and may demonstrate heritable effects. Our study represents the first multigenerational assessment of elevated temperatures in combination with environmentally relevant concentrations of commonly detected endocrine disruptors in a model vertebrate species.


Subject(s)
Aquatic Organisms/drug effects , Aquatic Organisms/radiation effects , Endocrine Disruptors/toxicity , Sex Distribution , Temperature , Water Pollutants, Chemical/toxicity , Animals , Ethinyl Estradiol/toxicity , Pyrethrins/toxicity , Survival Analysis , Vertebrates
5.
Aquat Toxicol ; 174: 247-60, 2016 May.
Article in English | MEDLINE | ID: mdl-26975043

ABSTRACT

Pyrethroid pesticides are a class of insecticides found to have endocrine disrupting properties in vertebrates such as fishes and in human cell lines. Endocrine disrupting chemicals (EDCs) are environmental contaminants that mimic or alter the process of hormone signaling. In particular, EDCs that alter estrogen and androgen signaling pathways are of major concern for fishes because these EDCs may alter reproductive physiology, behavior, and ultimately sex ratio. Bifenthrin, a pyrethroid with escalating usage, is confirmed to disrupt estrogen signaling in several species of fish, including Menidia beryllina (inland silverside), an Atherinid recently established as a euryhaline model. Our main objective was to broadly assess the molecular and physiological responses of M. beryllina to the ng/L concentrations of bifenthrin typically found in the environment, with a focus on endocrine-related effects, and to discern links between different tiers of the biological hierarchy. As such, we evaluated the response of juvenile Menidia to bifenthrin using a Menidia-specific microarray, quantitative real-time polymerase chain reaction (qPCR) on specific endocrine-related genes of interest, and a Menidia-specific ELISA to the egg-coat protein choriogenin, to evaluate a multitude of molecular-level responses that would inform mechanisms of toxicity and any underlying causes of change at higher biological levels of organization. The sublethal nominal concentrations tested (0.5, 5 and 50ng/L) were chosen to represent the range of concentrations observed in the environment and to provide coverage of a variety of potential responses. We then employed a 21-day reproductive assay to evaluate reproductive responses to bifenthrin (at 0.5ng/L) in a separate group of adult M. beryllina. The microarray analysis indicated that bifenthrin influences a diverse suite of molecular pathways, from baseline metabolic processes to carcinogenesis. A more targeted examination of gene expression via qPCR demonstrated that bifenthrin downregulates a number of estrogen-related transcripts, particularly at the lowest exposure level. Choriogenin protein also decreased with exposure to increasing concentrations of bifenthrin, and adult M. beryllina exposed to 0.5ng/L had significantly reduced reproductive output (fertilized eggs per female). This reduction in fecundity is consistent with observed changes in endocrine-related gene expression and choriogenin production. Taken together, our results demonstrate that environmental concentrations of bifenthrin have potential to interfere with metabolic processes, endocrine signaling, and to decrease reproductive output.


Subject(s)
Egg Proteins/genetics , Fertility/drug effects , Fishes/physiology , Pyrethrins/toxicity , Transcriptome/drug effects , Animals , Endocrine Disruptors/toxicity , Endocrine System/drug effects , Estrogens/metabolism , Female , Fishes/genetics , Insecticides/toxicity , Models, Theoretical , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...