Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 10(3): e0234621, 2022 06 29.
Article in English | MEDLINE | ID: mdl-35579457

ABSTRACT

Novel bacterial isolates with the capabilities of lignin depolymerization, catabolism, or both, could be pertinent to lignocellulosic biofuel applications. In this study, we aimed to identify anaerobic bacteria that could address the economic challenges faced with microbial-mediated biotechnologies, such as the need for aeration and mixing. Using a consortium seeded from temperate forest soil and enriched under anoxic conditions with organosolv lignin as the sole carbon source, we successfully isolated a novel bacterium, designated 159R. Based on the 16S rRNA gene, the isolate belongs to the genus Sodalis in the family Bruguierivoracaceae. Whole-genome sequencing revealed a genome size of 6.38 Mbp and a GC content of 55 mol%. To resolve the phylogenetic position of 159R, its phylogeny was reconstructed using (i) 16S rRNA genes of its closest relatives, (ii) multilocus sequence analysis (MLSA) of 100 genes, (iii) 49 clusters of orthologous groups (COG) domains, and (iv) 400 conserved proteins. Isolate 159R was closely related to the deadwood associated Sodalis guild rather than the tsetse fly and other insect endosymbiont guilds. Estimated genome-sequence-based digital DNA-DNA hybridization (dDDH), genome percentage of conserved proteins (POCP), and an alignment analysis between 159R and the Sodalis clade species further supported that isolate 159R was part of the Sodalis genus and a strain of Sodalis ligni. We proposed the name Sodalis ligni str. 159R (=DSM 110549 = ATCC TSD-177). IMPORTANCE Currently, in the paper industry, paper mill pulping relies on unsustainable and costly processes to remove lignin from lignocellulosic material. A greener approach is biopulping, which uses microbes and their enzymes to break down lignin. However, there are limitations to biopulping that prevent it from outcompeting other pulping processes, such as requiring constant aeration and mixing. Anaerobic bacteria are a promising alternative source for consolidated depolymerization of lignin and its conversion to valuable by-products. We presented Sodalis ligni str. 159R and its characteristics as another example of potential mechanisms that can be developed for lignocellulosic applications.


Subject(s)
Enterobacteriaceae , Lignin , Anaerobiosis , Animals , Bacterial Typing Techniques , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Enterobacteriaceae/genetics , Lignin/metabolism , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Symbiosis
2.
PLoS One ; 15(9): e0233823, 2020.
Article in English | MEDLINE | ID: mdl-32941430

ABSTRACT

Lignin is the second most abundant carbon polymer on earth and despite having more fuel value than cellulose, it currently is considered a waste byproduct in many industrial lignocellulose applications. Valorization of lignin relies on effective and green methods of de-lignification, with a growing interest in the use of microbes. Here we investigate the physiology and molecular response of the novel facultative anaerobic bacterium, Tolumonas lignolytica BRL6-1, to lignin under anoxic conditions. Physiological and biochemical changes were compared between cells grown anaerobically in either lignin-amended or unamended conditions. In the presence of lignin, BRL6-1 accumulates higher biomass and has a shorter lag phase compared to unamended conditions, and 14% of the proteins determined to be significantly higher in abundance by log2 fold-change of 2 or greater were related to Fe(II) transport in late logarithmic phase. Ferrozine assays of the supernatant confirmed that Fe(III) was bound to lignin and reduced to Fe(II) only in the presence of BRL6-1, suggesting redox activity by the cells. LC-MS/MS analysis of the secretome showed an extra band at 20 kDa in lignin-amended conditions. Protein sequencing of this band identified a protein of unknown function with homology to enzymes in the radical SAM superfamily. Expression of this protein in lignin-amended conditions suggests its role in radical formation. From our findings, we suggest that BRL6-1 is using a protein in the radical SAM superfamily to interact with the Fe(III) bound to lignin and reducing it to Fe(II) for cellular use, increasing BRL6-1 yield under lignin-amended conditions. This interaction potentially generates organic free radicals and causes a radical cascade which could modify and depolymerize lignin. Further research should clarify the extent to which this mechanism is similar to previously described aerobic chelator-mediated Fenton chemistry or radical producing lignolytic enzymes, such as lignin peroxidases, but under anoxic conditions.


Subject(s)
Aeromonadaceae/metabolism , Iron/metabolism , Lignin/metabolism , Aeromonadaceae/enzymology , Aeromonadaceae/growth & development , Bacterial Proteins/metabolism , Biomass , Oxidation-Reduction , Sulfatases/metabolism
3.
Microbiol Resour Announc ; 8(18)2019 May 02.
Article in English | MEDLINE | ID: mdl-31048387

ABSTRACT

The complete genome sequence of the gammaproteobacterial isolate Serratia quinivorans 124R consists of 5 Mb over 2 scaffolds and a G+C content of 52.85%. Genes relating to aromatic metabolism reflect its isolation on organosolv lignin as a sole carbon source under anoxic conditions as well as the potential for lignin biorefinery applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...