Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Physiol ; 598(13): 2703-2717, 2020 07.
Article in English | MEDLINE | ID: mdl-32298483

ABSTRACT

KEY POINTS: Cutaneous reflexes were tested to examine the neuronal mechanisms contributing to muscle spasms in humans with chronic spinal cord injury (SCI). Specifically, we tested the effect of Achilles and tibialis anterior tendon vibration on the early and late components of the cutaneous reflex and reciprocal Ia inhibition in the soleus and tibialis anterior muscles in humans with chronic SCI. We found that tendon vibration reduced the amplitude of later but not earlier cutaneous reflex in the antagonist but not in the agonist muscle relative to the location of the vibration. In addition, reciprocal Ia inhibition between antagonist ankle muscles increased with tendon vibration and participants with a larger suppression of the later component of the cutaneous reflex had stronger reciprocal Ia inhibition from the antagonistic muscle. Our study is the first to provide evidence that tendon vibration attenuates late cutaneous spasm-like reflex activity, likely via reciprocal inhibitory mechanisms, and may represent a method, when properly targeted, for controlling spasms in humans with SCI. ABSTRACT: The neuronal mechanisms contributing to the generation of involuntary muscle contractions (spasms) in humans with spinal cord injury (SCI) remain poorly understood. To address this question, we examined the effect of Achilles and tibialis anterior tendon vibration at 20, 40, 80 and 120 Hz on the amplitude of the long-polysynaptic (LPR, from reflex onset to 500 ms) and long-lasting (LLR, from 500 ms to reflex offset) cutaneous reflex evoked by medial plantar nerve stimulation in the soleus and tibialis anterior, and reciprocal Ia inhibition between these muscles, in 25 individuals with chronic SCI. We found that Achilles tendon vibration at 40 and 80 Hz, but not other frequencies, reduced the amplitude of the LLR in the tibialis anterior, but not the soleus muscle, without affecting the amplitude of the LPR. Vibratory effects were stronger at 80 than 40 Hz. Similar results were found in the soleus muscle when the tibialis anterior tendon was vibrated. Notably, tendon vibration at 80 Hz increased reciprocal Ia inhibition between antagonistic ankle muscles and vibratory-induced increases in reciprocal Ia inhibition were correlated with decreases in the LLR, suggesting that participants with a larger suppression of later cutaneous reflex activity had stronger reciprocal Ia inhibition from the antagonistic muscle. Our study is the first to provide evidence that tendon vibration suppresses late spasm-like activity in antagonist but not agonist muscles, likely via reciprocal inhibitory mechanisms, in humans with chronic SCI. We argue that targeted vibration of antagonistic tendons might help to control spasms after SCI.


Subject(s)
Spinal Cord Injuries , Vibration , Electromyography , H-Reflex , Humans , Muscle Contraction , Muscle, Skeletal , Spasm
2.
J Appl Physiol (1985) ; 125(4): 1131-1140, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29771606

ABSTRACT

Motor unit number estimation (MUNE) is important for determining motoneuron survival with age or in conditions such as amyotrophic lateral sclerosis or spinal cord injury. The original incremental method and approaches that were introduced to minimize alternation (e.g., multiple-point stimulation) are most commonly used, but one must accept the limitation that alternation of motor units may still inflate the estimate. Alternation occurs because axon thresholds are probabilistic and overlap for different axons; therefore, different combination of motor units may respond at a given stimulus intensity. Our aims were to quantify motor unit alternation systematically in the thenar muscles of 35 healthy adults by digital subtraction of EMG and force, and to compare MUNE with and without alternation. Alternation was prevalent, with one to nine occurrences in the first 7 to 11 steps in EMG in 34 of 35 muscles. It occurred in the first 3 steps in EMG in 49% of muscles. This alternation resulted in fewer units than steps in EMG (3 to 10 units at step 7 to 11). Accounting for alternation using digital subtraction reduced MUNE by up to 50%, day-to-day, and between-participant variability in MUNE. These results highlight the need to quantify alternation to improve the reliability and precision of motor unit number estimates, which will allow for detection of smaller changes in motoneuron survival with age, various health conditions, and/or due to an intervention. NEW & NOTEWORTHY Motor unit alternation was quantified systematically for the first time, addressing a major limitation of motor unit number estimates. Accounting for alternation decreased motor unit number estimates, and improved the reliability and precision of the motor unit number estimate, which will allow smaller, clinically relevant changes in motoneuron survival to be detected.


Subject(s)
Diagnostic Techniques, Neurological , Motor Neurons/physiology , Adult , Electromyography , Female , Humans , Male , Middle Aged
3.
Article in English | MEDLINE | ID: mdl-28232792

ABSTRACT

Correlations between physiological, clinical and self-reported assessments of spasticity are often weak. Our aims were to quantify functional, self-reported and physiological indices of spasticity in individuals with thoracic spinal cord injury (SCI; 3 women, 9 men; 19-52 years), and to compare the strength and direction of associations between these measures. The functional measure we introduced involved recording involuntary electromyographic activity during a transfer from wheelchair to bed which is a daily task necessary for function. High soleus (SL) and tibialis anterior (TA) F-wave/M-wave area ratios were the only physiological measures that distinguished injured participants from the uninjured (6 women, 13 men, 19-67 years). Hyporeflexia (decreased SL H/M ratio) was unexpectedly present in older participants after injury. During transfers, the duration and intensity of involuntary electromyographic activity varied across muscles and participants, but coactivity was common. Wide inter-participant variability was seen for self-reported spasm frequency, severity, pain and interference with function, as well as tone (resistance to imposed joint movement). Our recordings of involuntary electromyographic activity during transfers provided evidence of significant associations between physiological and self-reported measures of spasticity. Reduced low frequency H-reflex depression in SL and high F-wave/M-wave area ratios in TA, physiological indicators of reduced inhibition and greater motoneuron excitability, respectively, were associated with long duration SL and biceps femoris (BF) electromyographic activity during transfers. In turn, participants reported high spasm frequency when transfers involved short duration TA EMG, decreased co-activation between SL and TA, as well as between rectus femoris (RF) vs. BF. Thus, the duration of muscle activity and/or the time of agonist-antagonist muscle coactivity may be used by injured individuals to count spasms. Intense electromyographic activity and high tone related closely (possibly from joint stabilization), while intense electromyographic activity in one muscle of an agonist-antagonist pair (especially in TA vs. SL, and RF vs. BF) likely induced joint movement and was associated with severe spasms. These data support the idea that individuals with SCI describe their spasticity by both the duration and intensity of involuntary agonist-antagonist muscle coactivity during everyday tasks.

4.
Int J Exerc Sci ; 7(4): 302-310, 2014.
Article in English | MEDLINE | ID: mdl-27182408

ABSTRACT

Muscular activity, vertical displacement and ground reaction forces of back squats (BS), rear-leg elevated split squats (RLESS) and split squats (SS) were examined. Nine resistance-trained men reported for two sessions. The first session consisted of the consent process, practice, and BS 1-repetition maximum testing. In the second session, participants performed the three exercises while EMG, displacment and ground reaction force data (one leg on plate) were collected. EMG data were collected from the gluteus maximus (GMX), biceps femoris (BF), semitendinosus (ST), rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), tibialis anterior (TA), and medial gastrocnemius (MGas) of the left leg (non-dominant, front leg for unilateral squats). Load for BS was 85% one repetition maximum, and RLESS and SS were performed at 50% of BS load. Repeated measures ANOVA was used to compare all variables for the three exercises, with Bonferroni adjustments for post hoc multiple comparisons, in addition to calculation of standardized mean differences (ES). Muscle activity was similar between exercises except for biceps femoris, which was significantly higher during RLESS than SS during both concentric and eccentric phases (ES = 2.11; p=0.012 and ES= 2.19; p=0.008), and significantly higher during BS than the SS during the concentric phase (ES = 1.78; p=0.029). Vertical displacement was similar between all exercises. Peak vertical force was similar between BS and RLESS and significantly greater during RLESS than SS (ES = 3.03; p=0.001). These findings may be helpful in designing resistance training programs by using RLESS if greater biceps femoris activity is desired.

SELECTION OF CITATIONS
SEARCH DETAIL
...