Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Dairy Sci ; 104(4): 5021-5033, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33516558

ABSTRACT

The objective of this study was to examine the effects of evaporative cooling and dietary supplemental Zn source on heat shock responses and mammary gland development of lactating dairy cows during summer. Seventy-two multiparous lactating Holstein cows were randomly assigned to 1 of 4 treatments in a 2 × 2 factorial arrangement. Cows were either cooled (CL) or not cooled (NC) and fed diets supplemented with 75 mg of Zn/kg of dry matter (DM) from Zn hydroxychloride (IOZ) or 35 mg of Zn/kg of DM from Zn hydroxychloride plus 40 mg of Zn/kg of DM from Zn-Met complex (ZMC). The 168-d trial included a 12-wk baseline phase when all cows were cooled and fed respective dietary treatments, and a subsequent 12-wk environmental challenge phase when NC cows were deprived of evaporative cooling. Plasma was collected from a subset of cows (n = 24) at 1, 3, 5, 12, 26, 41, 54, 68, 81 d of the environmental challenge to measure heat shock protein (HSP) 70 concentration. Mammary biopsies were collected from another subset of cows (n = 30) at enrollment (baseline samples) and at d 7 and 56 of the environmental challenge to analyze gene expression related to heat shock response, apoptosis and anti-oxidative enzymes, and to examine apoptosis and cell proliferation using immunohistochemistry. Supplemental Zn source did not affect milk yield but NC cows produced less milk than CL cows. Supplemental Zn source had no effect on mammary gene expression of HSP27, 70, and 90 or plasma concentrations of HSP70. The NC cows had greater mammary gene expression of HSP than CL cows. Circulating HSP70 of NC cows gradually increased and was higher at 81 d of environmental challenge compared with CL cows. Relative to IOZ, ZMC cows tended to have lower total mammary cell proliferation but greater mammary apoptosis. There was a tendency of greater TNFRSF1A mRNA expression for ZMC compared with IOZ cows, which may suggest upregulated extrinsic apoptosis. At d 7 of environmental challenge, NC cows had numerically higher mammary apoptosis than CL cows although not statistically significant. The NC cows tended to have greater mRNA expression of CAT and SOD3 regardless of time, and had greater mRNA expression of GPX1 at d 56 and FAS at d 7 of the environmental challenge than CL cows. Relative to CL cows, mammary cell proliferation rate was higher for NC cows at d 56 of the environmental challenge. In conclusion, dietary source of supplemental Zn has substantial effect on mammary cell turnover in lactating dairy cows, and prolonged exposure to heat stress increases mammary cell proliferation.


Subject(s)
Heat-Shock Response , Lactation , Animals , Cattle , Diet/veterinary , Dietary Supplements , Female , Milk , Zinc
2.
J Dairy Sci ; 104(2): 2410-2421, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33358164

ABSTRACT

Study objectives were to evaluate the effects of replacing 40 mg/kg of dietary Zn from Zn sulfate (ZS) with Zn amino acid complex (ZA; Zinpro Corporation, Eden Prairie, MN) on inflammation and intestinal integrity in heat-stressed and pair-fed (PF) ruminants. Forty Holstein steers (173.6 ± 4.9 kg) were randomly assigned to 1 of 5 dietary-environmental treatments: (1) thermoneutral (TN) ad libitum with 75 mg/kg of dry matter (DM) ZS (ZSCON); (2) TN pair-fed with 75 mg/kg DM ZS (ZSPF); (3) TN pair-fed with 40 mg/kg DM ZA and 35 mg/kg DM ZS (ZAPF); (4) heat stress (HS) ad libitum with 75 mg/kg DM ZS (ZSHS); and (5) HS ad libitum 40 mg/kg DM ZA and 35 mg/kg DM ZS (ZAHS). Before study initiation, calves were fed their respective diets for 21 d. Following the pre-feeding phase, steers were transferred into environmental chambers and were subjected to 2 successive experimental periods. During period 1 (5 d), all steers were fed their respective diets ad libitum and housed in TN conditions (20.2 ± 1.4°C, 30.4 ± 4.3% relative humidity). During period 2 (6 d), ZSHS and ZAHS steers were exposed to cyclical HS conditions (27.1 ± 1.5°C to 35.0 ± 2.9°C, 19.3 ± 3.5% relative humidity), whereas the ZSCON, ZSPF, and ZAPF steers remained in TN conditions and were fed ad libitum or pair-fed relative to their ZSHS and ZAHS counterparts. Overall, steers exposed to HS had markedly increased rectal temperature (0.83°C), respiration rate (26 breaths per min), and skin temperature (8.00°C) relative to TN treatments. Rectal temperature from ZAHS steers was decreased (0.24°C) on d 4 to 6 of HS relative to ZSHS steers. Regardless of diet, HS decreased DMI (18%) relative to ZSCON steers. Circulating glucose from HS and PF steers decreased (16%) relative to ZSCON steers. Heat stress and nutrient restriction increased circulating nonesterified fatty acids 2- and 3-fold, respectively, compared with ZSCON steers. Serum amyloid A increased ~2-fold in PF relative to ZSCON and HS steers. We detected no treatment effect on blood pH; however, ZAHS steers had increased HCO3 relative to ZSHS. Relative to ZSHS, ZAHS steers had increased jejunum villi height (25%), a tendency for increased ileum villi height (9%), and decreased duodenal villi width (16%). In summary, ZA supplementation has some beneficial effects on thermal indices, intestinal architecture characteristics, and biomarkers of leaky gut in heat-stressed steers, indicative of an ameliorated heat load, and thus may be a nutritional strategy to minimize negative consequences of HS.


Subject(s)
Amino Acids/therapeutic use , Cattle Diseases/drug therapy , Dietary Supplements , Heat Stress Disorders/veterinary , Inflammation/veterinary , Intestines/drug effects , Zinc/therapeutic use , Animals , Biomarkers/metabolism , Cattle , Diet/veterinary , Fatty Acids, Nonesterified/blood , Heat Stress Disorders/drug therapy , Heat-Shock Response , Hot Temperature , Inflammation/drug therapy , Respiratory Rate/drug effects , Skin Temperature
3.
J Dairy Sci ; 101(3): 2617-2630, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29290442

ABSTRACT

Dietary Zn and heat stress alter gut integrity in monogastric animals. However, effects of Zn on mammary epithelial integrity in heat-stressed lactating dairy cows have not been studied. Multiparous lactating Holstein cows (n = 72) were randomly assigned to 1 of 4 treatments with a 2 × 2 factorial arrangement to study the effects of environment and Zn source on performance and mammary epithelial integrity. Treatments included 2 environments [cooled (CL) or not cooled (NC)] and 2 Zn sources [75 mg/kg of supplemental Zn as Zn hydroxychloride (IOZ) or 35 mg/kg of Zn hydroxychloride + 40 mg/kg of Zn-Met complex (ZMC)]. The experiment was divided into baseline and environmental challenge phases of 84 d each. All cows were cooled during the baseline phase (temperature-humidity index = 72.5), whereas NC cows were not cooled during environmental challenge (temperature-humidity index = 77.7). Mammary biopsies were collected on d 7 and 56 relative to the onset of environmental challenge to analyze gene expression of claudin 1, 4, and 8, zonula occludens 1, 2, and 3, occludin, and E-cadherin and protein expression of occludin and E-cadherin. Deprivation of cooling increased respiration rate (64.8 vs. 73.9 breaths/min) and vaginal temperature (39.03 vs. 39.94°C) and decreased dry matter intake (26.7 vs. 21.6 kg/d). Energy-corrected milk yield decreased for NC cows relative to CL cows (24.5 vs. 34.1 kg/d). An interaction between environment and Zn source occurred for milk fat content as CL cows fed ZMC had lower milk fat percentage than other groups. Relative to CL cows, NC cows had lower concentrations of lactose (4.69 vs. 4.56%) and solids-not-fat (8.46 vs. 8.32%) but a higher concentration of milk urea nitrogen (9.07 vs. 11.02 mg/mL). Compared with IOZ, cows fed ZMC had lower plasma lactose concentration during baseline and tended to have lower plasma lactose concentration during environmental challenge. Plasma lactose concentration tended to increase at 3, 5, and 41 d after the onset of environmental challenge in NC cows relative to CL cows. Treatment had no effect on milk BSA concentration. Cows fed ZMC tended to have higher gene expression of E-cadherin relative to IOZ. Compared with CL, NC cows had increased gene expression of occludin and E-cadherin and tended to have increased claudin 1 and zonula occludens 1 and 2 gene expression in the mammary gland. Protein expression of occludin and E-cadherin was unchanged. In conclusion, removing active cooling impairs lactation performance and affects gene expression of proteins involved in the mammary epithelial barrier, and feeding a portion of dietary zinc as ZMC improves the integrity of the mammary epithelium.


Subject(s)
Cattle/physiology , Epithelial Cells/physiology , Hot Temperature/adverse effects , Mammary Glands, Animal/physiology , Stress, Physiological/physiology , Zinc/metabolism , Animal Feed/analysis , Animals , Diet/veterinary , Dietary Supplements/analysis , Female , Lactation , Random Allocation , Zinc/administration & dosage
4.
J Dairy Sci ; 100(10): 8422-8425, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28755927

ABSTRACT

Mammary biopsy collection (MB) is a valuable approach for studying mammary gland biology, but it is unclear if repeated MB impair the performance of lactating dairy cows. The objective of this trial was to examine the effect of repeated MB during lactation on udder health, dry matter intake (DMI), and lactation performance of lactating dairy cows. Sixty-four multiparous, mid-lactation Holstein cows were enrolled in a 29-wk trial, and 32 cows were randomly selected for repeated MB. The MB and non-MB (NMB) cows had similar parity (2.6 ± 0.9) and days in milk (96.5 ± 56.3 d) at enrollment. All animals were housed in the same barn and managed in the same manner. Cows were milked 3 times daily with milk yield recorded at each milking. Milk composition was measured weekly and DMI recorded daily. Three MB were performed per cow: 1 wk after enrollment and at 15 and 24 wk. The first and third MB were performed on the left rear quarter, whereas the second MB was on the right rear quarter. The MB were performed based on previously described procedures using a rotating stainless steel cannula with a retractable blade connected to a cordless drill, with appropriate sedation and antiseptic treatment after each MB. After MB, udder health, surgical wound healing, and presence of blood in milk were visually examined at each milking. Blood was cleared from milk 3.86 ± 2.0 d after MB. During the experiment, 4 rear quarters of MB cows and 5 rear quarters from NMB cows were diagnosed and treated for clinical mastitis. No differences were observed in DMI, milk yield, somatic cell score, or milk concentration and yields of fat, protein, lactose, and solids-not-fat between MB and NMB. In conclusion, lactating cows recover rapidly from MB, and repeated MB have no long-term effects on DMI, milk yield and composition, or udder health of lactating dairy cows.


Subject(s)
Lactation/physiology , Mammary Glands, Animal/pathology , Animals , Biopsy/adverse effects , Biopsy/veterinary , Cattle , Dairying , Female , Mammary Glands, Animal/physiology , Mastitis, Bovine/pathology , Milk/metabolism , Parity , Pregnancy
5.
J Dairy Sci ; 97(7): 4392-404, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24819137

ABSTRACT

Multiparous (n=70) and primiparous (n=66) Holstein cows were balanced by 305-d previous mature-equivalent milk yield and parity and assigned to 1 of 3 dietary treatments to evaluate the ratio of zinc sulfate to zinc amino acid complex (CZ) in pre- and postpartum Holstein cows fed diets containing 75 mg of added zinc/kg. Treatments were (1) 75 mg of supplemental zinc/kg of dry matter (DM) provided entirely as zinc sulfate (0-CZ); (2) 0-CZ diet, except 33.3 mg of zinc sulfate/kg of DM in the prepartum and 15.5mg of zinc sulfate/kg of DM in the postpartum diet were replaced by CZ from Availa-Zn (16-CZ; Zinpro Corp., Eden Prairie MN); and (3) 0-CZ diet, except 66.6 mg of zinc sulfate/kg of DM in the prepartum and 40.0 mg of zinc sulfate/kg of DM in the postpartum diet was replaced by Availa-Zn (40-CZ). Cows were housed at the Iowa State University Dairy Farm and were individually offered a total mixed ration containing dietary treatments beginning at 28 ± 15 d before expected calving date until 250 d in milk. Relative to 0-CZ, multiparous cows (but not primiparous) fed CZ (16-CZ or 40-CZ) had increased (20%) colostrum IgG concentrations. Prepartum DM intake (DMI) was decreased with CZ supplementation. Postpartum DMI was decreased in cows fed CZ, whereas milk yield (MY) was increased in the 40-CZ-fed cows relative to those fed both 0-CZ and 16-CZ. Feed efficiency increased linearly when measured as MY/DMI, 3.5% fat-corrected MY/DMI, and solids-corrected MY/DMI. Regardless of level, feeding CZ decreased services per conception. Feeding 16-CZ decreased milk fat concentration and feeding CZ linearly increased milk urea nitrogen concentration. In summary, supplementing zinc as a mixture of CZ and zinc sulfate, as opposed to supplementing only zinc sulfate, has beneficial effects on production parameters in dairy cows, with those benefits becoming more apparent as the ratio of CZ to zinc sulfate increases.


Subject(s)
Amino Acids/pharmacology , Cattle/physiology , Milk/metabolism , Zinc Sulfate/pharmacology , Zinc/pharmacology , Animals , Diet/veterinary , Dietary Supplements , Female , Lactation/drug effects , Parity , Postpartum Period , Pregnancy
6.
J Dairy Sci ; 96(11): 7329-7339, 2013.
Article in English | MEDLINE | ID: mdl-23992979

ABSTRACT

Foot health records are useful in monitoring the degree of lameness within dairy herds and, perhaps more importantly, providing insight into the underlying factors causing lameness. A database containing the incidence of foot lesions on large confinement dairy operations is largely unavailable but could prove useful to demonstrate the importance of collecting and analyzing foot lesion data to reduce lameness. Our objective was to merge foot lesion records from several dairy herds and establish a database to demonstrate how to use such data to better understand when and why foot lesions occur as an important means to manage lameness in dairy herds. The database consisted of 12 mo of records from 17 dairies (14 freestall, 1 combination dirt lot and freestall, 2 dirt lot) representing 58,155 cows from herds ranging in size from 631 to 9,355 animals in 9 states from the United States and 2 herds located in the Southern Hemisphere. Data were partitioned and analyzed as 2 separate data sets: (1) herds recording only lame events (cows lame when examined; n=8), and (2) herds recording both lame and routine trim events (n=9). Data were analyzed using PROC FREQ (SAS Institute Inc., Cary, NC) and significance was determined using Chi-square. White line disease, sole ulcer, toe ulcer, digital dermatitis, and foot rot comprised 93 and 40% (excluding routine trim with no lesion, 55%) of lesions for herds recording only lame events and those recording lame and trim events, respectively. Ratio of infectious to noninfectious lesions decreased with increasing lactation number in both data sets. Digital dermatitis and foot rot were greatest in the first 60 d in milk and differed across lactation number. Noninfectious lesions were greatest following summer heat stress, whereas infectious lesions were greatest during the coolest quarter of the year. In conclusion, analysis of the foot health data from these dairies demonstrates that (1) infectious lesions of the foot skin and soft tissues predominate in early lactation and during cooler months of the year, and (2) noninfectious lesions predominate during the 3 mo following summer heat stress and their distribution follows a typical lactation curve.


Subject(s)
Cattle Diseases/epidemiology , Foot Diseases/veterinary , Hoof and Claw/pathology , Lameness, Animal/epidemiology , Animals , Cattle , Digital Dermatitis/epidemiology , Digital Dermatitis/pathology , Female , Foot Diseases/pathology , Foot Ulcer/veterinary , Incidence , Lactation , Milk/cytology , Seasons , United States
7.
J Anim Physiol Anim Nutr (Berl) ; 95(5): 571-82, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21091551

ABSTRACT

We used four pregnant Holstein cows to delineate ruminal adaptations as cows transitioned from one lactation to the next. Cows were fed typical diets through far-off and close-up dry periods and lactation. We measured ruminal characteristics on day 72 (late lactation), 51 (far-off dry), 23 and 9 (close-up dry) prepartum and on days 6, 20, 34, 48, 62, 76 and 90 postpartum (early lactation). Measurements included: ruminal fill (weight of actual contents), ruminal capacity (volume of rumen when fully filled), digestibilities and ruminal passage rates. Ruminal capacity tended to increase linearly during early lactation but was stable during dry and transition periods. Both total and liquid fill decreased linearly during the dry period, increased across parturition, and increased linearly through early lactation. Dry matter fill decreased as cows were fed the close-up diet at day 23 prepartum then increased near parturition and continued to increase across early lactation. Solid passage rate was greatest when cows were fed the close-up diet, and decreased throughout the transition period. In lactation, solid passage rate responded quadratically with peak at day 48 followed by decreases through day 90 postpartum. Liquid passage increased linearly across the transition period. Total tract organic matter digestibilities increased linearly over the dry period with significant increases prior to or immediately after parturition, then they remained relatively stable over early lactation until they increased at day 90. Fibre digestibilities demonstrated quadratic responses over early lactation, being higher on day 6 and day 90 than at other times. Starch digestibilities decreased linearly across both the dry and transition periods with decreases in lactation until day 62 followed by increases until day 90. High producing lactating dairy cows go through a multitude of ruminal adaptations, in terms of digestion, passage, capacity and fill, as they transition from one lactation to the next.


Subject(s)
Cattle/physiology , Dairying , Peripartum Period/physiology , Rumen/physiology , Animal Feed , Animals , Diet/veterinary , Digestion/physiology , Female , Gastrointestinal Contents/chemistry , Gastrointestinal Motility/physiology , Lactation/physiology , Pregnancy
8.
J Dairy Sci ; 91(5): 1985-95, 2008 May.
Article in English | MEDLINE | ID: mdl-18420629

ABSTRACT

Two hundred fifty multiparous and primiparous cows were assigned to a study at approximately 70 d prepartum to determine the effect of trace mineral source on lactation performance, claw integrity, and fertility. Cows received treatments from 3 wk prepartum through wk 35 postpartum. Treatments consisted of 1) all supplemental Zn, Mn, Cu, and Co provided in sulfate form (Sulfate) and 2) 360 mg of Zn, 200 mg of Mn, 125 mg of Cu, and 12 mg of Co supplied daily by Sulfate minerals replaced with similar amounts of minerals supplied by Availa-4 (CTM). Individuals involved with daily animal care or data recording, or both, were blinded to treatment assignments. Cows from all treatments were housed in common pens, and treatments were dispensed to cows via a computerized feeder. All claws of cows were examined before treatment administration and at 16 and 36 wk postpartum by personnel trained in identifying claw lesions. Cows fed the CTM diet tended to produce more milk and energy-corrected milk than cows fed the Sulfate diet. Cows fed the CTM diet also produced more milk protein and solids (fat + protein) than cows fed the Sulfate diet. Replacing Sulfate minerals with those supplied by CTM decreased incidence of sole ulcers at wk 36 postpartum and tended to decrease incidence of interdigital dermatitis at wk 16 and 36 postpartum. Severity of heel erosion tended to be less for cows fed CTM than cows receiving the Sulfate diet. Despite first service conception rates tending to be greater for cows fed the Sulfate diet, there was no effect of treatment on rate of conception. A greater percentage of cows fed the Sulfate diet tended to be culled from the herd before wk 36 postpartum than cows fed the CTM diet. Replacing Sulfate minerals with CTM resulted in improved lactation performance and claw integrity.


Subject(s)
Cattle/physiology , Diet , Fertility/physiology , Hoof and Claw/physiology , Lactation/physiology , Trace Elements/administration & dosage , Animals , Cattle Diseases/prevention & control , Cobalt/administration & dosage , Copper/administration & dosage , Female , Fertility/drug effects , Foot Diseases/prevention & control , Foot Diseases/veterinary , Lactation/drug effects , Liver/chemistry , Manganese/administration & dosage , Pregnancy , Trace Elements/analysis , Zinc/administration & dosage
9.
J Dairy Sci ; 89(1): 267-76, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16357290

ABSTRACT

Twenty-four multiparous Holstein cows (775 +/- 24 kg body weight; 3.4 +/- 0.11 body condition score) were used in a randomized complete block design experiment to determine the impact of increased ruminal butyrate from the fermentation of lactose on metabolism and lactation. Dietary treatments were either a corn-based control diet (CON) or a diet containing lactose at 15.7% of diet dry matter (LAC). Experimental diets were fed from 21 d before expected calving through 21 d in milk (DIM). Blood was sampled at -21, -14, -7, -2, 2, 7, 14, and 21 DIM, rumen fluid at -21, -7, and 7 DIM, and liver tissue via biopsy at 7 and 14 DIM. Pre- and postpartum dry matter intake (DMI) through 28 DIM averaged 12.8 and 17.7 kg/d, respectively, and did not differ between treatments; however, cows fed LAC did not exhibit a prepartum decrease in DMI. Milk yield was unaffected by treatments and averaged 45.7 kg/d during the first 70 DIM. Plasma glucose, insulin, and non-esterified fatty acids were not affected by dietary treatments. Feeding LAC increased the ruminal proportion of butyrate both pre- (11.3 vs. 9.2 +/- 0.45%) and postpartum (13.0 vs. 10.3 +/- 0.67%). Likewise, circulating plasma beta-hydroxybutyrate was increased both pre- (6.1 vs. 4.2 +/- 0.31 mg/dL) and postpartum (14.6 vs. 8.34 +/- 1.7 mg/dL) when feeding LAC compared with CON. Liver lipid content was decreased (8.6. vs. 14.7 +/- 1.5% of wet weight) in cows fed LAC relative to those fed CON, whereas liver glycogen was not affected by dietary treatments. Feeding lactose to transition dairy cows increased the proportion of butyrate in the rumen and beta-hydroxybutyrate in plasma and decreased liver lipid but did not affect lactation performance.


Subject(s)
Butyrates/metabolism , Cattle/metabolism , Diet/veterinary , Lactose/administration & dosage , Rumen/metabolism , 3-Hydroxybutyric Acid/blood , Animal Nutritional Physiological Phenomena , Animals , Blood Glucose/analysis , Butyrates/analysis , Fats/analysis , Fatty Acids, Nonesterified/blood , Female , Fermentation , Glycogen/analysis , Insulin/blood , Lactation , Lactose/analysis , Lactose/metabolism , Lipids/analysis , Liver/chemistry , Milk/chemistry , Milk Proteins/analysis , Pregnancy , Rumen/chemistry
10.
J Dairy Sci ; 88(12): 4405-13, 2005 Dec.
Article in English | MEDLINE | ID: mdl-16291632

ABSTRACT

Twenty-four multiparous Holstein cows [body weight, 759 kg (SD = 30 kg); body condition score, 3.2 (SD = 0.13)] were used in a randomized complete block design to determine the effect of feeding alpha-amylase during the transition period on rumen fermentation, key metabolic indicators, and lactation performance. Cows were assigned to either a control diet or the control diet supplemented with alpha-amylase (662 fungal amylase units per gram, AMA) at 0.1% of diet dry matter (DM). Experimental diets were fed from 21 d before expected calving through 21 d in milk. From 22 to 70 d in milk, all cows were fed a similar lactation cow diet. Average pre- and postpartum DM intakes were 12.4 and 17.8 kg/d, respectively, and did not differ between treatments; however, DM intakes during the last week prepartum decreased to a greater degree in AMA than control cows compared with wk -2. Supplementing diets with alpha-amylase tended to increase proportions of ruminal butyrate prepartum but not postpartum. Treatment differences were not detected for concentrations of insulin in plasma and lipid and glycogen in liver tissue. Prepartum, concentrations of beta-hydroxybutyrate and nonesterified fatty acids were increased in cows fed AMA compared with the control diet. Postpartum, concentrations of glucose in plasma tended to be increased by feeding AMA. Increased plasma beta-hydroxybutyrate and nonesterified fatty acids pre- but not postpartum and a tendency for increased plasma glucose postpartum demonstrate shifting reliance from lipid- to carbohydrate-based metabolism postpartum in cows fed alpha-amylase.


Subject(s)
Cattle/physiology , Diet/veterinary , alpha-Amylases/administration & dosage , 3-Hydroxybutyric Acid/blood , Ammonia/analysis , Animal Nutritional Physiological Phenomena , Animals , Blood Glucose/analysis , Butyrates/analysis , Cell Count , Dietary Supplements , Fatty Acids, Nonesterified/blood , Fatty Acids, Volatile/analysis , Female , Fermentation/drug effects , Insulin/blood , Lactation/drug effects , Lactation/physiology , Milk/chemistry , Milk/cytology , Postpartum Period , Pregnancy , Rumen/chemistry , Rumen/metabolism
11.
J Dairy Sci ; 88(3): 983-93, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15738233

ABSTRACT

Multiparous Holstein cows (n = 40) were used in a randomized complete block design to determine the effects of feeding Ca and Na salts (1:1, wt/wt) of propionate and Ca salts of long-chain fatty acids (LCFA) on transition cow performance. All cows were fed the same basal diet once daily for ad libitum intake. Treatments (g/d) were 320 cornstarch (CS) as a control, 120 propionate (PRO), 120 propionate and 93 LCFA (PF1), and 178 propionate and 154 LCFA (PF2). Treatments were hand-mixed into the upper one-third of the TMR from 2 wk pre- through 3 wk postpartum. Intakes were recorded from 21 d pre- through 21 d postpartum. Energy density and crude protein were 1.54 and 1.65 Mcal/kg and 14.4 and 18.8% for pre- and postpartum diets, respectively. All cows received a common diet from 22 to 70 days in milk (DIM). Milk composition was analyzed on d 7, 14, and 21. Blood was sampled at 14, 7, and 2 d prepartum and 2, 7, 14, and 21 DIM. Pre- and postpartal dry matter intake (DMI) averaged 11.9 and 16.4 kg/d, respectively, and did not differ among treatments. A diet x week interaction for postpartal DMI was observed as cows fed PF2 consumed 2 kg/d less DM during wk 2 relative to other treatments. Milk yields from 22 to 70 DIM were 48.8, 48.5, 47.8, and 51.3 kg/d for CS, PRO, PF1, and PF2, respectively, and were not significantly affected by treatments. Milk true protein (3.32 vs. 3.16%) was increased and MUN (12.5 vs. 14.4 mg/dL) was decreased for CS relative to other treatments. Milk fat yield from cows fed PRO tended to be greater than those fed PF1 (1.58 vs. 1.29 kg/d). Plasma glucose, insulin, and beta-hydroxybutyrate were not affected by treatments. The PF2 treatment tended to decrease NEFA in plasma relative to PF1 over all times measured (492 and 670 muEq/L) and significantly decreased plasma NEFA relative to those fed PF1 postpartum (623 and 875 muEq/L). Relative to PF1, feeding propionate and LCFA at the higher level in this experiment improved energy balance postpartum as evidenced by decreased concentrations of plasma NEFA.


Subject(s)
Cattle/physiology , Fatty Acids/administration & dosage , Lactation/metabolism , Milk/chemistry , Propionates/administration & dosage , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Blood Glucose/metabolism , Calcium/administration & dosage , Cattle/blood , Cattle/metabolism , Dietary Proteins/administration & dosage , Dose-Response Relationship, Drug , Energy Intake , Fatty Acids/metabolism , Fatty Acids, Nonesterified/blood , Female , Insulin/blood , Lactation/drug effects , Lipid Metabolism , Milk/metabolism , Nutritional Requirements , Postpartum Period , Pregnancy , Propionates/metabolism , Random Allocation , Rumen/metabolism , Sodium/administration & dosage
12.
J Dairy Sci ; 87(12): 4195-206, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15545383

ABSTRACT

Glycerol can alleviate the symptoms of ketosis when delivered as an oral drench. The addition of glycerol to the diet would eliminate the need for restraining cows for drenching yet deliver a glucogenic substrate, alleviate the fatty liver-ketosis complex, and improve lactational performance. For this study, 21 multiparous and 9 primiparous Holstein cows blocked by parity and expected calving date were used in a randomized block design to evaluate the effects of feeding glycerol from 14 d prepartum to 21 d in milk (DIM). Treatments (kg/d dry matter basis) were 0.86 of cornstarch (control), 0.43 cornstarch + 0.43 glycerol (LG), or 0.86 glycerol (HG), topdressed and hand-mixed into the upper one-third of the daily ration. All cows were fed a common diet from 22 to 70 DIM. Prepartum dry matter intake (DMI) was greater for cows fed the control diet compared with LG or HG (13.3, 10.8, and 11.3 +/- 0.50 kg/d, respectively). Prepartum plasma glucose, insulin, beta-hydroxybutyrate, nonesterified fatty acids, and ruminal profiles were not affected by treatments. Rumen fluid collected postpartum from cows fed LG and HG had greater total volatile fatty acids, greater molar proportions of propionate, and a decreased ratio of acetate to propionate. Furthermore, concentrations of butyrate tended to be greater in rumens of cows fed LG and HG. Postpartum concentrations of glucose in plasma were greatest for cows fed the control diet relative to LG and HG (66.0 vs. 63.1 and 58.4 mg/dL, respectively) and decreased sharply at 21 DIM, after treatments ended, for cows fed HG (diet x day interaction). Body weight and condition loss, plasma nonesterified fatty acids, and liver lipids during the first 21 DIM were similar among treatments. Postpartum DMI was not affected by treatments; however, a tendency was observed for a diet x day interaction for body weight, as cows fed LG gained more body weight from 21 to 70 DIM relative to cows fed HG. Yield of energy-corrected milk during the first 70 DIM tended to be greatest for cows fed the control diet. The LG and HG diets decreased urea nitrogen concentrations in milk relative to controls. Based upon prepartum DMI and concentrations of glucose and beta-hydroxybutyrate in blood postpartum, feeding glycerol to dairy cows at the levels used in this experiment increased indicators used to gauge the degree of ketosis in dairy cattle.


Subject(s)
Cattle/physiology , Glycerol/administration & dosage , Lactation/metabolism , Milk/chemistry , Rumen/metabolism , 3-Hydroxybutyric Acid/blood , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Area Under Curve , Blood Glucose/analysis , Cattle/blood , Cattle/metabolism , Dose-Response Relationship, Drug , Fatty Acids, Nonesterified/blood , Fatty Acids, Volatile/analysis , Female , Glycerol/pharmacology , Lipid Metabolism , Lipids/blood , Milk/metabolism , Nutritional Requirements , Parity , Postpartum Period , Pregnancy , Random Allocation , Weight Gain/drug effects
13.
J Dairy Sci ; 87(11): 3899-911, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15483174

ABSTRACT

We evaluated effects of wet corn gluten feed (WCGF) and a novel product (SHSL) containing raw soybean hulls and corn steep liquor on performance and digestion in lactating dairy cows. In Experiment 1, 46 multiparous Holstein cows were assigned to control (C), WCGF (20% of diet DM), or SHSL (20% of diet DM). Diets were fed as a total mixed ration beginning after calving. The C diet contained (dry matter [DM] basis) 30% alfalfa hay, 15% corn silage, 32% corn, 9.3% whole cottonseed, 4.4% solvent soybean meal (SBM), and 3.3% expeller SBM. The WCGF replaced 10% alfalfa hay, 5% corn silage, and 5% corn grain, while expeller SBM replaced solvent SBM to maintain diet rumen undegradable protein. The SHSL replaced 10% alfalfa hay, 5% corn silage, 3% solvent SBM, and 2% corn. Dietary crude protein averaged 18.4%. Milk, energy-corrected milk (ECM), DM intake (DMI), and ECM/DMI were similar among diets during the first 13 wk of lactation. During wk 14 through 30 postpartum, WCGF and SHSL improved milk, ECM, milk component yield, and ECM/DMI. In Experiment 2, 6 cows were used to evaluate digestibility and rumen traits. Dry matter intake and total tract digestibilities of DM, fiber, and crude protein were not different among diets. Diets did not affect ruminal liquid dilution rate, pH, or concentrations of total volatile fatty acids or ammonia, but acetate:propionate was higher for C (3.38) than for WCGF (2.79) or SHSL (2.89). The WCGF and SHSL products can serve as alternative feedstuffs in diets fed to lactating dairy cattle.


Subject(s)
Cattle/physiology , Digestion/drug effects , Glycine max , Lactation/drug effects , Milk/chemistry , Milk/metabolism , Rumen/metabolism , Zea mays , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Cattle/growth & development , Dietary Proteins/administration & dosage , Dietary Proteins/metabolism , Energy Intake , Female , Lactation/metabolism , Lactation/physiology , Random Allocation , Rumen/chemistry
14.
J Dairy Sci ; 87(8): 2486-94, 2004 Aug.
Article in English | MEDLINE | ID: mdl-15328272

ABSTRACT

Ruminal fermentation of lactose increases molar proportions of butyrate, which is metabolized by the ruminal epithelium to beta-hydroxybutyrate (BHBA). To determine the effects of dietary whey, and specifically lactose, on concentrations of ruminal and blood volatile fatty acids (VFA) and blood BHBA, 8 Holstein and 4 Brown Swiss multiparous cows (210 +/- 33 d in milk) were blocked by breed and randomly assigned to one of three 4 x 4 Latin squares. Treatments were control (CON; 7.1% of dietary dry matter [DM] as cornstarch), liquid whey (WHEY; 9.4% of diet DM) containing 70% lactose on a DM basis, low lactose (LOLAC; 7.1% lactose), or high lactose (HILAC; 14.3% lactose). Diets contained 53% forage as corn silage, alfalfa hay, and grass hay (DM basis) and a corn and soybean meal-based concentrate. Average dietary percentage of crude protein and energy density (Mcal/kg net energy for lactation) were 16.8 and 1.47, respectively. Feeding lactose increased DM intake. Milk production and composition were not affected by diet with the exception of decreased urea nitrogen in milk from cows fed lactose. Greater proportions of ruminal propionate were observed in cows fed CON relative to those fed WHEY and LOLAC. Increasing dietary lactose increased proportions of ruminal butyrate and decreased acetate and branched-chain VFA. Concurrent with the increase in ruminal butyrate concentrations, there was an increase in plasma BHBA as lactose in the diet increased. Concentrations of VFA in plasma were not affected by diet with the exception of the branched-chain VFA, which were increased in cows fed LOLAC compared with WHEY. These data indicate lactose fermentation increases proportions of ruminal butyrate and plasma BHBA in lactating dairy cows; however, the observed increase in plasma BHBA is not sufficient to subject cows to ketosis.


Subject(s)
3-Hydroxybutyric Acid/blood , Butyric Acid/metabolism , Cattle/metabolism , Diet , Lactose/administration & dosage , Rumen/metabolism , Animals , Dietary Proteins/administration & dosage , Energy Intake , Fatty Acids, Volatile/blood , Fatty Acids, Volatile/metabolism , Female , Fermentation , Lactation , Medicago sativa , Milk/chemistry , Milk Proteins/administration & dosage , Silage , Glycine max , Whey Proteins , Zea mays
15.
J Dairy Sci ; 85(8): 2000-8, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12214992

ABSTRACT

We used four ruminally cannulated, multiparous Holstein cows (690 kg; 21 kg/d milk) in a 2-period crossover design to determine the impact of feeding a raw soybean hull-corn steep liquor pellet (SHSL) on induced subacute ruminal acidosis (SARA) in lactating cows. Cows were fed control [30% alfalfa hay, 15% corn silage, 34% corn, 9% whole cottonseed, 5% soybean meal (SBM)] or SHSL (20% of diet DM) diets as TMR. SHSL replaced 6.2% alfalfa hay, 3.7% corn silage, 6.6% corn, and 3.3% SBM. Periods were 15 d (10 d adaptation, 2 d for prechallenge measures, and 3 d of SARA challenge). Cows were fed once daily at a common DMI dictated by the cow consuming the least. Cows were fasted 12 h before the first SARA challenge. For each of the three SARA challenges, cows were offered 75% of their daily diet at 0600 h. The remaining 25% of diet DM was replaced by ground corn, which was mixed with the orts that remained 2 h after feeding and placed into the rumen. Ruminal pH declined linearly with time after feeding, and this decrease was greater during the SARA challenges. Ruminal lactate increased linearly with repeated SARA challenges. Concentrations of total ruminal VFA increased linearly after feeding, and increases were greater when cows were challenged. No differences were observed due to SHSL inclusion. The model induced SARA, but partial replacement of alfalfa, corn silage, corn, and SBM by SHSL did not influence responses to SARA challenges.


Subject(s)
Acidosis/veterinary , Cattle Diseases/etiology , Glycine max , Rumen , Stomach Diseases/veterinary , Zea mays , Acidosis/etiology , Animal Feed , Animals , Cattle , Diet , Dietary Fiber/administration & dosage , Fatty Acids, Volatile/analysis , Female , Fermentation , Hydrogen-Ion Concentration , Lactation , Lactic Acid/analysis , Rumen/chemistry , Rumen/metabolism , Stomach Diseases/etiology
16.
J Dairy Sci ; 85(12): 3403-10, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12512613

ABSTRACT

An experiment was conducted to evaluate the effect of a pelleted combination of raw soyhulls and condensed corn steep liquor on performance and plasma metabolites when fed to replace a portion of the grain and forage in diets for lactating dairy cows. The raw soybean hull-corn steep liquor pellet (SHSL) contained 24.2% crude protein, 8.7% rumen undegradable protein, 28.9% acid detergent fiber, 36.7% neutral detergent fiber, and 2.5% ether extract (% of dry matter, [DM]). Eighteen multiparous Holstein cows were assigned to one of three diets in a replicated 3 x 3 Latin square design with 28-d periods. Cows were blocked by pretreatment body weight and energy-corrected milk (ECM) and assigned to control, SHSL (20.7% of diet DM), or pelleted raw soybean hulls ([PSH] 14.3% of diet DM). The SHSL product replaced 6.2% alfalfa hay, 3.7% corn silage, 6.6% corn, and 3.3% soybean meal (SBM), and 1.7% expeller SBM replaced solvent SBM in order to maintain dietary levels of rumen undegradable protein. PSH replaced 6.2% alfalfa hay, 3.7% corn silage, and 5.1% corn. Diet crude protein (%) and energy density (Mcal/kg NEL) were 16.6 and 1.64, 16.3 and 1.65, 17.1 and 1.63 for control, SHSL, and PSH, respectively. Cows fed PSH consumed more DM than cows fed control, with the intake of cows fed SHSL being intermediate. SHSL and PSH increased ECM, milk protein, and solids-notfat and showed higher concentrations of milk and plasma urea N and total alpha-amino N in plasma than the control diet. Furthermore, feeding SHSL tended to improve the ratio of ECM to DM intake. There was no effect of diet on concentrations of total essential and nonessential amino acids in plasma. These production data suggest SHSL can replace a portion of the forage, grain, and SBM in diets for lactating dairy cows without decreasing lactational performance.


Subject(s)
Cattle/physiology , Diet , Glycine max , Lactation , Zea mays , Animals , Blood Urea Nitrogen , Body Weight , Dietary Fiber/analysis , Dietary Proteins/analysis , Eating , Female , Medicago sativa , Milk/chemistry , Nitrogen/analysis , Parity , Rumen/metabolism , Silage , Urea/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...