Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 14: 702, 2020.
Article in English | MEDLINE | ID: mdl-32754012

ABSTRACT

Odors can be powerful stimulants. It is well-established that odors provide strong cues for recall of locations, people and events. The effects of specific scents on other cognitive functions are less well-established. We hypothesized that scents with different odor qualities will have a different effect on attention. To assess attention, we used Inter-Subject Correlation of the EEG because this metric is strongly modulated by attentional engagement with natural audiovisual stimuli. We predicted that scents known to be "energizing" would increase Inter-Subject Correlation during watching of videos as compared to "calming" scents. In a first experiment, we confirmed this for eucalyptol and linalool while participants watched animated autobiographical narratives. The result was replicated in a second experiment, but did not generalize to limonene, also considered an "energizing" odorant. In a third, double-blind experiment, we tested a battery of scents including single molecules, as well as mixtures, as participants watched various short video clips. We found a varying effect of odor on Inter-Subject Correlation across the various scents. This study provides a basis for reliably and reproducibly assessing effects of odors on brain activity. Future research is needed to further explore the effect of scent-based up-modulation in engagement on learning and memory performance. Educators, product developers and fragrance brands might also benefit from such objective neurophysiological measures.

2.
Neuroimage ; 179: 79-91, 2018 10 01.
Article in English | MEDLINE | ID: mdl-29902585

ABSTRACT

Human brain mapping relies heavily on fMRI, ECoG and EEG, which capture different physiological signals. Relationships between these signals have been established in the context of specific tasks or during resting state, often using spatially confined concurrent recordings in animals. But it is not certain whether these correlations generalize to other contexts relevant for human cognitive neuroscience. Here, we address the case of complex naturalistic stimuli and ask two basic questions. First, how reliable are the responses evoked by a naturalistic audio-visual stimulus in each of these imaging methods, and second, how similar are stimulus-related responses across methods? To this end, we investigated a wide range of brain regions and frequency bands. We presented the same movie clip twice to three different cohorts of subjects (NEEG = 45, NfMRI = 11, NECoG = 5) and assessed stimulus-driven correlations across viewings and between imaging methods, thereby ruling out task-irrelevant confounds. All three imaging methods had similar repeat-reliability across viewings when fMRI and EEG data were averaged across subjects, highlighting the potential to achieve large signal-to-noise ratio by leveraging large sample sizes. The fMRI signal correlated positively with high-frequency ECoG power across multiple task-related cortical structures but positively with low-frequency EEG and ECoG power. In contrast to previous studies, these correlations were as strong for low-frequency as for high frequency ECoG. We also observed links between fMRI and infra-slow EEG voltage fluctuations. These results extend previous findings to the case of natural stimulus processing.


Subject(s)
Brain Mapping/methods , Brain/physiology , Electrocorticography/methods , Electroencephalography/methods , Magnetic Resonance Imaging/methods , Acoustic Stimulation , Adult , Female , Humans , Male , Photic Stimulation , Reproducibility of Results , Young Adult
3.
Neuroimage ; 180(Pt A): 134-146, 2018 10 15.
Article in English | MEDLINE | ID: mdl-28545933

ABSTRACT

In neuroscience, stimulus-response relationships have traditionally been analyzed using either encoding or decoding models. Here we propose a hybrid approach that decomposes neural activity into multiple components, each representing a portion of the stimulus. The technique is implemented via canonical correlation analysis (CCA) by temporally filtering the stimulus (encoding) and spatially filtering the neural responses (decoding) such that the resulting components are maximally correlated. In contrast to existing methods, this approach recovers multiple correlated stimulus-response pairs, and thus affords a richer, multidimensional analysis of neural representations. We first validated the technique's ability to recover multiple stimulus-driven components using electroencephalographic (EEG) data simulated with a finite element model of the head. We then applied the technique to real EEG responses to auditory and audiovisual narratives experienced identically across subjects, as well as uniquely experienced video game play. During narratives, both auditory and visual stimulus-response correlations (SRC) were modulated by attention and tracked inter-subject correlations. During video game play, SRC varied with game difficulty and the presence of a dual task. Interestingly, the strongest component extracted for visual and auditory features of film clips had nearly identical spatial distributions, suggesting that the predominant encephalographic response to naturalistic stimuli is supramodal. The diversity of these findings demonstrates the utility of measuring multidimensional SRC via hybrid encoding-decoding.


Subject(s)
Brain/physiology , Signal Processing, Computer-Assisted , Electroencephalography/methods , Female , Humans , Male , Young Adult
4.
PLoS One ; 12(1): e0168995, 2017.
Article in English | MEDLINE | ID: mdl-28045963

ABSTRACT

Videos and commercials produced for large audiences can elicit mixed opinions. We wondered whether this diversity is also reflected in the way individuals watch the videos. To answer this question, we presented 65 commercials with high production value to 25 individuals while recording their eye movements, and asked them to provide preference ratings for each video. We find that gaze positions for the most popular videos are highly correlated. To explain the correlations of eye movements, we model them as "interactions" between individuals. A thermodynamic analysis of these interactions shows that they approach a "critical" point such that any stronger interaction would put all viewers into lock-step and any weaker interaction would fully randomise patterns. At this critical point, groups with similar collective behaviour in viewing patterns emerge while maintaining diversity between groups. Our results suggest that popularity of videos is already evident in the way we look at them, and that we maintain diversity in viewing behaviour even as distinct patterns of groups emerge. Our results can be used to predict popularity of videos and commercials at the population level from the collective behaviour of the eye movements of a few viewers.


Subject(s)
Behavior , Fixation, Ocular/physiology , Video Recording , Eye Movements , Humans , Models, Statistical , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...