Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Tree Physiol ; 20(3): 187-194, 2000 Feb.
Article in English | MEDLINE | ID: mdl-12651471

ABSTRACT

On calm, cold days in winter, sun-exposed needles of red spruce (Picea rubens Sarg.) may warm 10 to 20 degrees C above ambient air temperature, and undergo rapid (>/= 1 degrees C min(-1)) fluctuations in temperature as light breezes or passing clouds alter the energy balance of the foliage. It has been proposed that the resulting rapid freeze-thaw cycles (freezing stress) cause a type of winter injury in montane red spruce that is characterized by necrosis of sun-exposed foliage. In autumn and winter, we monitored rapid freezing stress response of needle sections from 10 montane red spruce trees by subjecting needles to rapid freezing over the temperature span typically recorded in the field. In autumn, experimental rapid freezing stress produced severe injury only at temperatures considerably lower than expected for that time of year. In winter, rapid freezing caused occasional, moderate injury in fully hardened foliage of trees susceptible to both slow and rapid freezing. Seasonal changes in sensitivity to rapid and slow freezing were correlated, suggesting that environmental factors that are known to affect sensitivity to slow freezing may also affect sensitivity to rapid freezing. Experimental manipulation of the start and end temperatures of rapid freezing stress events showed that moderate to severe needle injury can occur in susceptible trees at temperature spans slightly more extreme than those typically recorded in the field. The extent of injury was similar at different starting temperatures if rapid freezing occurred over the same temperature span. Year-old foliage was consistently less sensitive to rapid freezing stress than current-year foliage, but some year-old foliage was damaged when the rapid freezing stress regime caused severe injury in current-year foliage. We conclude that rapid freeze-thaw cycles can explain light to moderate injury of current-year foliage, but they do not explain the more severe and widespread pattern of foliar damage that has occurred intermittently over at least the last 18 years.

2.
Tree Physiol ; 20(2): 73-85, 2000 Jan.
Article in English | MEDLINE | ID: mdl-12651475

ABSTRACT

We examined the effects and potential interactions of acid mist and soil solution Ca and Al treatments on foliar cation concentrations, membrane-associated Ca (mCa), ion leaching, growth, carbon exchange, and cold tolerance of red spruce (Picea rubens Sarg.) saplings. Soil solution Ca additions increased foliar Ca and Zn concentrations, and increased rates of respiration early in the growing season (July). Soil Al treatment had a broad impact, reducing foliar concentrations of Ca, Mg, Mn, P and Zn, and resulting in smaller stem diameters, sapling heights and shoot lengths compared with soil treatments with no added Al. Aluminum treatment also reduced respiration when shoots were elongating in July and decreased net photosynthesis at the end of the growing season (September). Three lines of evidence suggest that Al-induced alterations in growth and physiology were independent of foliar Ca status: (1) Ca concentrations in foliage of Al-treated saplings were within the range of sufficiency established for red spruce; (2) mCa concentrations were unaffected by Al treatment; and (3) no Al x Ca interactions were detected. Acid mist treatment increased foliar Fe and K concentrations and increased leaching of Ca, Mg, Mn, Zn, Fe, and Al from foliage. Leaching losses of Ca were more than twice those of the element with the next highest amount of leaching (Zn), and probably led to the reductions in mCa concentration and membrane stability of acid-treated saplings. Acidic mist resulted in enhanced shoot growth, and consistent reductions in foliar cold tolerance in the fall and winter. Of the few significant interactions among treatments, most involved the influence of mist pH and Al treatment on foliar nutrition. In general, reductions in cation concentration associated with Al addition were greater for pH 5.0-treated saplings than for pH 3.0-treated saplings. We propose that H(+)-induced leaching of mCa from mesophyll cells is the mechanism underlying acid-induced reductions in foliar cold tolerance of red spruce.

3.
Tree Physiol ; 17(11): 687-95, 1997 Nov.
Article in English | MEDLINE | ID: mdl-14759893

ABSTRACT

We examined the pattern of seasonal variation in total foliar calcium (Ca) pools and plasma membrane-associated Ca (mCa) in mesophyll cells of current-year and 1-year-old needles of red spruce (Picea rubens Sarg.) and the relationship between mCa and total foliar Ca on an individual plant and seasonal basis. Foliar samples were collected from seedlings and analyzed on 16 dated at 2- to 3-week intervals between June 1994 and March 1995. Concentrations of mCa in current-year needles were more seasonally dynamic and responsive to temporal environmental changes than either mCa concentrations of 1-year-old needles, which were largely stable, or total foliar Ca concentrations in both tissues. In current-year needles, mCa was barely evident in early summer, increased steadily through summer, and then increased dramatically in early fall and surpassed the concentration in 1-year-old needles. Coincident with the first severe frost, mCa concentrations in current-year needles declined significantly and subsequently maintained concentrations comparable to those of 1-year-old needles. Following an extended January thaw, which included 5 days of minimum temperatures > 5 degrees C, mCa concentrations of current-year needles temporarily, but significantly, declined. However, there was no change in mCa concentrations of 1-year-old needles or total Ca concentrations of either tissue. Total Ca concentrations were stable through midsummer in both tissues, doubled in late summer, and then were stable in both tissues throughout fall and winter. Total Ca concentrations were consistently higher in 1-year-old than in current-year needles. Correlations between concentrations of mCa and total foliar Ca were consistently low and mostly nonsignificant. Thus, the dominant, but insoluble, extracellular Ca pool reflected in commonly measured total foliar Ca concentrations is not a meaningful surrogate for the physiologically important and labile pool associated with the plasma membrane-cell wall compartment of red spruce mesophyll cells. It is likely that shifts in the critical mCa compartment would not be detected by analysis of total foliar Ca pools. Seasonal changes in mCa concentration seemed to parallel seasonal changes in membrane structure, and possibly the important role of extracellular Ca in transducing messages associated with environmental signals.

4.
Tree Physiol ; 16(6): 567-74, 1996 Jun.
Article in English | MEDLINE | ID: mdl-14871710

ABSTRACT

We evaluated net photosynthesis, respiration, leaf conductance, xylem pressure potential (XPP) and cold hardiness in red spruce (Picea rubens Sarg.) seedlings exposed to either a continuous thaw (CT) or a daytime thaw with freezing nights (FN) for 8 days during mid-winter. Physiological differences between CT and FN seedlings were evident for all measured parameters. However, the temporal expression of treatment differences varied among parameters. When compared to FN seedlings, CT seedlings had higher rates of respiration following 24 h of treatment, and a higher net photosynthetic rate, leaf conductance and XPP after 48 h of treatment. The CT seedlings were significantly less cold tolerant than the FN seedlings following 4 days of thaw, whereas FN seedlings did not deharden over the 8 days of treatment. Examination of temporal trends among thaw-associated changes in physiology suggested that, although greater carbon exchange occurred as stomatal conductance increased, the transition from negative to positive net photosynthesis was not the result of increases in conductance, but may have been associated with thaw-induced increases in XPP. Because thaw-associated changes in gas exchange and cold hardiness were offset in time, we conclude that, if changes in these processes are physiologically linked, the linkage is indirect.

SELECTION OF CITATIONS
SEARCH DETAIL
...