Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Control Hosp Epidemiol ; 44(11): 1760-1768, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37088696

ABSTRACT

OBJECTIVE: Although needleless connectors (NCs) are widely used in clinical practice, they carry significant risk of bloodstream infection (BSI). In this study, we quantified differences in bacterial transfer and biofilm formation between various NCs. DESIGN: Prospective, clinically simulated in vitro experimental study. METHODS: We tested 20 NCs in a 5-day clinical simulation of Staphylococcus aureus inoculations onto NC septum surfaces, which were then flushed with saline and cultured for bacterial transfer. Biofilm formation was measured through destructive sampling of the connector-catheter system. Moreover, 8 NC design factors were evaluated for their influence on bacterial transfer and biofilm formation. This study was designed without a disinfection protocol to ascertain the intrinsic risk of each NC. RESULTS: Clave Neutron and MicroClave had the lowest overall mean log density of bacteria in the flush compared to other NCs (P < .05), except there were no statistically significant differences between Clave Neutron, Microclave, SafeTouch, and SafeAccess (P ≥ .05). The amount of biofilm in the NC was positively associated with bacteria in the flush (P < .0005). Among 8 design factors, flow path was most important, with the internal cannula associated with a statistically significant 1 log reduction (LR) in bacteria in the flush (R2 = 49%) and 0.5-2 LR in the connector (R2 = 34%). All factors together best explained bacteria in the flush (R2 = 65%) and biofilm in the connector (R2 = 48%). CONCLUSIONS: Bacterial transfer and biofilm formation in the connector-catheter system varied statistically significantly between the 20 NCs, suggesting that NC choice can lower the risk of developing catheter-related BSIs.


Subject(s)
Bacteria , Disinfection , Humans , Prospective Studies , Disinfection/methods , Catheters , Biofilms
2.
Wounds ; 35(12): E414-E419, 2023 12.
Article in English | MEDLINE | ID: mdl-38277629

ABSTRACT

BACKGROUND: Most chronic wounds contain biofilm, and debridement remains the centerpiece of treatment. Enzymatic debridement is an effective tool in removing nonviable tissue, however, there is little evidence supporting its effect on planktonic and biofilm bacteria. OBJECTIVE: This study evaluated the effects of a novel BBD agent on removal of nonviable tissue, biofilm, and microbial loads in patients with chronic ulcers. MATERIALS AND METHODS: Twelve patients with DFU or VLU were treated with up to 8 once-daily applications of BBD and then followed for an additional 2 weeks. Punch biopsy specimens were collected and analyzed for biofilm, and fluorescence imaging was used to measure bacterial load. RESULTS: Ten patients completed treatment, and 7 achieved complete debridement within a median of 2 applications (range, 2-8). By the end of the 2-week follow-up period, the mean ± SD reduction in wound area was 35% ± 38. In all 6 patients who were positive for biofilm at baseline, the biofilm was reduced to single individual or no detected microorganisms by the end of treatment. Red fluorescence for Staphylococcus aureus decreased from a mean of 1.09 cm² ± 0.58 before treatment to 0.39 cm² ± 0.25 after treatment. BBD was safe and well tolerated. CONCLUSION: Preliminary data suggest that BBD is safe and that it can be used to effectively debride DFU and VLU, reduce biofilm and planktonic bacterial load, and promote reduction in wound size.


Subject(s)
Diabetes Mellitus , Diabetic Foot , Humans , Biofilms , Bromelains/pharmacology , Bromelains/therapeutic use , Debridement/methods , Diabetic Foot/therapy , Wound Healing , Proof of Concept Study
3.
Front Microbiol ; 11: 565914, 2020.
Article in English | MEDLINE | ID: mdl-33013797

ABSTRACT

One of the major causes of prosthetic joint failure is infection. Recently, coagulase negative Staphylococcus epidermidis has been identified as an emergent, nosocomial pathogen involved in subclinical prosthetic joint infections (PJIs). The diagnosis of PJIs mediated by S. epidermidis is usually complex and difficult due to the absence of acute clinical signs derived from the host immune system response. Therefore, analysis of protein patterns in biofilm-producing S. epidermidis allows for the examination of the molecular basis of biofilm formation. Thus, in the present study, the proteome of a clinical isolate S. epidermidis was analyzed when cultured in its planktonic or sessile form to examine protein expression changes depending on culture conditions. After 24 h of culture, sessile bacteria exhibited increased gene expression for ribosomal activity and for production of proteins related to the initial attachment phase, involved in the capsular polysaccharide/adhesin, surface associated proteins and peptidoglycan biosynthesis. Likewise, planktonic S. epidermidis was able to aggregate after 24 h, synthesizing the accumulation associate protein and cell-wall molecules through the activation of the YycFG and ArlRS, two component regulatory pathways. Prolonged culture under vigorous agitation generated a stressful growing environment triggering aggregation in a biofilm-like matrix as a mechanism to survive harsh conditions. Further studies will be essential to support these findings in order to further delineate the complex mechanisms of biofilm formation of S. epidermidis and they could provide the groundwork for the development of new drugs against biofilm-related infections, as well as the identification of novel biomarkers of subclinical or chronic infections mediated by these emerging, low virulence pathogens.

4.
J Antimicrob Chemother ; 73(1): 102-108, 2018 Jan 01.
Article in English | MEDLINE | ID: mdl-29029221

ABSTRACT

BACKGROUND: Clostridium difficile, a spore-forming Gram-positive anaerobic bacillus, is the most common causative agent of healthcare-associated diarrhoea. Formation of biofilms may protect C. difficile against antibiotics, potentially leading to treatment failure. Furthermore, bacterial spores or vegetative cells may linger in biofilms in the gut causing C. difficile infection recurrence. OBJECTIVES: In this study, we evaluated and compared the efficacy of four antibiotics (fidaxomicin, surotomycin, vancomycin and metronidazole) in penetrating C. difficile biofilms and killing vegetative cells. METHODS: C. difficile biofilms grown initially for 48 or 72 h using the colony biofilm model were then treated with antibiotics at a concentration of 25 × MIC for 24 h. Vegetative cells and spores were enumerated. The effect of treatment on biofilm structure was studied by scanning electron microscopy (SEM). The ability of fidaxomicin and surotomycin to penetrate biofilms was studied using fluorescently tagged antibiotics. RESULTS: Both surotomycin and fidaxomicin were significantly more effective than vancomycin or metronidazole (P < 0.001) at killing vegetative cells in established biofilms. Fidaxomicin was more effective than metronidazole at reducing viable spore counts in biofilms (P < 0.05). Fluorescently labelled surotomycin and fidaxomicin penetrated C. difficile biofilms in < 1 h. After 24 h of treatment, SEM demonstrated that both fidaxomicin and surotomycin disrupted the biofilm structure, while metronidazole had no observable effect. CONCLUSIONS: Fidaxomicin is effective in disrupting C. difficile biofilms, killing vegetative cells and decreasing spore counts.


Subject(s)
Aminoglycosides/pharmacology , Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Clostridioides difficile/drug effects , Lipopeptides/pharmacology , Metronidazole/pharmacology , Peptides, Cyclic/pharmacology , Vancomycin/pharmacology , Biological Transport/physiology , Clostridioides difficile/growth & development , Colony Count, Microbial , Fidaxomicin , Humans , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Spores, Bacterial/drug effects
5.
Wound Repair Regen ; 24(2): 373-83, 2016 03.
Article in English | MEDLINE | ID: mdl-26748963

ABSTRACT

Biofilms have been implicated in delayed wound healing, although the mechanisms by which biofilms impair wound healing are poorly understood. Many species of bacteria produce exotoxins and exoenzymes that may inhibit healing. In addition, oxygen consumption by biofilms and by the responding leukocytes, may impede wound healing by depleting the oxygen that is required for healing. In this study, oxygen microsensors to measure oxygen transects through in vitro cultured biofilms, biofilms formed in vivo within scabs from a diabetic (db/db) mouse wound model, and ex vivo human chronic wound specimens was used. The results showed that oxygen levels within mouse scabs had steep gradients that reached minima ranging from 17 to 72 mmHg on live mice and from 6.4 to 1.1 mmHg on euthanized mice. The oxygen gradients in the mouse scabs were similar to those observed for clinical isolates cultured in vitro and for human ex vivo specimens. To characterize the metabolic activities of the bacteria in the mouse scabs, transcriptomics analyses of Pseudomonas aeruginosa biofilms associated with the db/db mice wounds was performed. The results demonstrated that the bacteria expressed genes for metabolic activities associated with cell growth. Interestingly, the transcriptome results also indicated that the bacteria within the wounds experienced oxygen-limitation stress. Among the bacterial genes that were expressed in vivo were genes associated with the Anr-mediated hypoxia-stress response. Other bacterial stress response genes highly expressed in vivo were genes associated with stationary-phase growth, osmotic stress, and RpoH-mediated heat shock stress. Overall, the results supported the hypothesis that bacterial biofilms in chronic wounds promote chronicity by contributing to the maintenance of localized low oxygen tensions, through their metabolic activities and through their recruitment of cells that consume oxygen for host defensive processes.


Subject(s)
Biofilms/growth & development , Biosensing Techniques , Diabetes Mellitus, Experimental/metabolism , Oxygen/metabolism , Pseudomonas Infections/microbiology , Transcriptome/physiology , Wound Infection/metabolism , Animals , Diabetes Mellitus, Experimental/pathology , Disease Models, Animal , Humans , Mice , Osmotic Pressure , Pseudomonas Infections/pathology , Wound Healing/physiology , Wound Infection/pathology
6.
J Am Assoc Lab Anim Sci ; 49(5): 588-91, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20858360

ABSTRACT

Research in cutaneous biology frequently involves models that use mice housed in SPF conditions. Little information is available concerning the species of bacteria that normally inhabit the skin of these mice. The aim of this study was to characterize the bacterial skin flora of mice housed under SPF conditions. Skin biopsies from C57BL/6 mice under normal and surgically prepped conditions were both cultured and analyzed by using DNA extraction and sequencing. The species isolated most commonly from culture were staphylococci. Coagulase-negative staphylococci were isolated more frequently than was Staphylococcus aureus. Molecular sequencing yielded several additional organisms not found by culture. Overall, culturing of isolates yielded 14 species of bacteria, and molecular sequencing identified another 6 species. Investigators conducting cutaneous research in mouse models should aware of the cutaneous bacterial flora present on these mice.


Subject(s)
Bacteria/isolation & purification , Mice/microbiology , Skin/microbiology , Animals , Bacteria/classification , Bacteria/genetics , DNA, Bacterial/analysis , Housing, Animal , Mice, Inbred C57BL , RNA, Ribosomal, 16S/analysis , Sequence Analysis , Specific Pathogen-Free Organisms
7.
Antimicrob Agents Chemother ; 51(5): 1813-7, 2007 May.
Article in English | MEDLINE | ID: mdl-17353241

ABSTRACT

Asiatic acid and corosolic acid are two natural products identified as biofilm inhibitors in a biofilm inhibition assay. We evaluated the activities of these two compounds on Pseudomonas aeruginosa biofilms grown in rotating disk reactors (RDRs) in combination with tobramycin and ciprofloxacin. To determine the ruggedness of our systems, the antibiotic susceptibilities of these biofilms were assessed with tobramycin and ciprofloxacin. The biofilm bacteria produced in the RDR were shown to display remarkable tolerance to 10 mug/ml of ciprofloxacin, thus mimicking the tolerance observed in recalcitrant bacterial infections. These studies further demonstrate that a nonmucoid strain of P. aeruginosa can form a biofilm that tolerates ciprofloxacin at clinically relevant concentrations. Neither asiatic acid nor corosolic acid reduced the viable cell density of P. aeruginosa biofilms. However, both compounds increased the susceptibility of biofilm bacteria to subsequent treatment with tobramycin, suggesting asiatic acid and corosolic acid to be compounds that potentiate the activity of antibiotics. A similar statistical interaction was observed between ciprofloxacin and subsequent treatment with tobramycin.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Pseudomonas aeruginosa/drug effects , Tobramycin/pharmacology , Triterpenes/pharmacology , Bacterial Proteins/physiology , Ciprofloxacin/pharmacology , Drug Synergism , Microbial Sensitivity Tests , Pentacyclic Triterpenes , Pseudomonas aeruginosa/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...