Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 116(8): 1877-83, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22276580

ABSTRACT

Reactions occurring within gas phase fluorobenenze-ammonia heterocluster cations (FC(6)H(5)-(NH(3))(n=1-4)) have been studied through the use of a triple quadrupole mass spectrometer as well as employing density functional theory (DFT). Collision induced dissociation (CID) experiments were conducted in which mass selected cluster ions are accelerated into a cell containing argon gas and the resulting products then subsequently mass analyzed. Two dominate reaction channels are observed. The first is simple evaporative loss of neutral ammonia from the cluster ion. The second involves a substitution reaction occurring within the cluster ion to form the aniline cation, C(6)H(5)NH(2)(+), where the reactivity was found to vary as a function of cluster size. DFT calculations have been performed to both help analyze the structure and the reactivity of these cluster ions. Pronounced differences in activation energies were found that provide an explanation for the observed variation of reactivity as a function of cluster size. An ad hoc model based upon the Arrhenius equation was developed to fit both the experimental collision energy dependence of the reaction and the observed lowering of the reaction barrier to aniline formation as a function of cluster size.


Subject(s)
Ammonia/chemistry , Fluorobenzenes/chemistry , Models, Chemical , Ions/chemistry
2.
J Phys Chem A ; 113(11): 2268-74, 2009 Mar 19.
Article in English | MEDLINE | ID: mdl-19239212

ABSTRACT

The reactivity of p-difluorobenzene/methanol cluster ions has been investigated by using triple quadrupole mass spectrometry and DFT calculations. The present study was performed in light of a recent investigation of p-difluorobenzene/methanol (P = F-C(6)H(4)-F and M = CH(3)OH) heterocluster ions where the solvent-catalyzed formation of p-fluoroanisole (A = CH(3)O-C(6)H(4)-F) was observed in P(M)(2)(+) clusters and not in PM(+) clusters. The results of our mass selected cluster ion study and theoretical calculations confirm that a single extra molecule of methanol can lower the reaction activation energy barrier in agreement with previous work for smaller clusters (PM(+) and P(M)(2)(+)). However, we also observe that P(M)(3)(+) and P(M)(4)(+) clusters undergo evaporative loss of neutral methanol to establish the P(M)(2)(+) cluster before reacting. P(M)(n>4)(+) clusters are capable of reacting through multiple pathways, in some cases generating a 1,4-dimethoxybenzene (B = CH(3)O-C(6)H(4)-OCH(3)) product via two separate substitution reactions within the same cluster ion. DFT calculations were employed to model the structures of the parent cluster ions, and transition state calculations were used to evaluate the activation energy for the p-fluoroanisole-forming substitution reaction. The calculations suggest that the reaction proceeds through a transition state containing a six-member hydrogen-bonded ring involving a reacting methanol and a second methanol that significantly lowers the activation energy.


Subject(s)
Fluorobenzenes/chemistry , Methanol/chemistry , Anisoles/chemistry , Ions/chemistry
3.
J Phys Chem A ; 112(46): 11559-65, 2008 Nov 20.
Article in English | MEDLINE | ID: mdl-18950147

ABSTRACT

To understand the interaction between toluene and methanol, the chemical reactivity of [(C6H5CH3)(CH3OH) n=1-7](+) cluster ions has been investigated via tandem quadrupole mass spectrometry and through calculations. Collision Induced Dissociation (CID) experiments show that the dissociated intracluster proton transfer reaction from the toluene cation to methanol clusters, forming protonated methanol clusters, only occurs for n = 2-4. For n = 5-7, CID spectra reveal that these larger clusters have to sequentially lose methanol monomers until they reach n = 4 to initiate the deprotonation of the toluene cation. Metastable decay data indicate that for n = 3 and n = 4 (CH3OH)3H(+) is the preferred fragment ion. The calculational results reveal that both the gross proton affinity of the methanol subcluster and the structure of the cluster itself play an important role in driving this proton transfer reaction. When n = 3, the cooperative effect of the methanols in the subcluster provides the most important contribution to allow the intracluster proton transfer reaction to occur with little or no energy barrier. As n >or= 4, the methanol subcluster is able to form ring structures to stabilize the cluster structures so that direct proton transfer is not a favored process. The preferred reaction product, the (CH3OH)3H(+) cluster ion, indicates that this size-restricted reaction is driven by both the proton affinity and the enhanced stability of the resulting product.


Subject(s)
Methanol/chemistry , Protons , Toluene/chemistry , Electrons , Mass Spectrometry , Quantum Theory
4.
J Phys Chem A ; 111(27): 6068-76, 2007 Jul 12.
Article in English | MEDLINE | ID: mdl-17569513

ABSTRACT

The interaction between ammonia and the benzene radical cation has been investigated by gas-phase studies of mass selected ion clusters {C(6)H(6)-(NH(3))(n=0-8)}(+) via tandem quadrupole mass spectrometry and through calculations. Experiments show a special stability for the cluster ion that contains four ammonias: {C(6)H(6)(NH(3))(4)}(+). Calculations provide evidence that the first ammonia forms a weak dative bond to the cyclohexadienyl radical cation, {C(6)H(6)-NH(3)}(+), where there is a transfer of electrons from ammonia to benzene. Additional solvating ammonia molecules form stabilizing hydrogen bonds to the ring-bound ammonia {C(6)H(6)-NH(3)}(+).(NH(3))(n), which cause cooperative changes in the structure of the cluster complex. Free ammonia is a weak hydrogen bond donor, but electron transfer from NH(3) to the benzene ring that strengthens the dative bond will increase the hydrogen acidity and the strength of the cluster hydrogen bonds to the added ammonia. A progressive "tightening" of this dative bond is observed upon addition of the first, second, and third ammonia to give a cluster stabilized by three N-(+)H x N hydrogen bonds. This shows that the energetic cost of tightening the dative bond is recovered with dividends in the formation of stable cluster hydrogen bonds.


Subject(s)
Ammonia/chemistry , Benzene/chemistry , Solvents/chemistry , Acids/chemistry , Alkalies/chemistry , Cations/chemistry , Hydrogen Bonding , Models, Chemical , Solutions/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...