Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Clin Med Phys ; 20(12): 159-168, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31568663

ABSTRACT

PURPOSE: The purpose of this study was to measure fluoroscopic dose calculation factors for modern fluoroscopy-guided interventional (FGI) systems, and to fit to analytical functions for peak skin dose (PSD) calculation. METHODS: Table transmission factor (TTF), backscatter factor (BSF), and a newly termed kerma correction factor (KCF) were measured for two interventional fluoroscopy systems. For each setup, air kerma rates were measured using a small ionization chamber in fluoroscopic service mode while selecting kVp, copper (Cu) filter thickness, incident angle, and x-ray field size at the assumed patient skin locations. Angle dependency on KCF was measured on the GE system at isocenter for angles of 0, 15, 30, and 40 degrees, using a range of kVp, Cu filters, and one field size. An analytical equation was created to fit the data to facilitate PSD calculation. RESULTS: For the GE system, oblique incidence measurements show KCF decreased by about 2%, 8%, and 13% for incident angles of 15, 30, and 40°, respectively, relative to KCF at 0 degree. The GE and Siemens systems' KCFs ranged from 0.89 to 1.45, and 0.64 to 1.44, respectively. The KCFs increased with a power of field size, and generally increased with kVp and Cu filter. The average percentage difference between TTF × BSF × f and KCF was 16% at normal incidence. The KCF data were successfully fitted to function of angle, field size, kVp, and Cu filter thickness using seven parameters, with an average R-squared value of 0.98 and maximum percentage difference of 6.0%. CONCLUSIONS: This study evaluated scatter factors for two fluoroscopy systems, and dependencies on angle, kVp, Cu filter, and field size, with emphasis on under table beam orientations. Analytical fitting of the data with exposure parameters may facilitate PSD calculations, and more accurately determine the potential for radiation-induced skin injury.


Subject(s)
Phantoms, Imaging , Radiography, Interventional/methods , Skin/radiation effects , Fluoroscopy , Humans , Radiation Dosage , Radiation Monitoring , Skin/diagnostic imaging
2.
Radiology ; 289(1): 150-157, 2018 10.
Article in English | MEDLINE | ID: mdl-30015583

ABSTRACT

Purpose To present procedure-specific radiation dose metric distributions and define quantitative CT utilization factors for CT-guided interventional procedures. Materials and Methods This single-center, retrospective study collected dictation reports and radiation dose data from 9143 consecutive CT-guided interventional procedures in adult patients from 2012 to 2017. Procedures were sorted into four major interventional categories: ablation, aspiration, biopsy, and drainage, each of which was further divided into subcategories. After exclusion, a total of 8213 procedures (4391 in men and 3822 in women) were divided into 21 subcategories. The mean patient age at examination for men was 62 years ± 15 (standard deviation; age range, 19-114 years), and for women it was 61 years ± 15 (age range, 19-113 years). Distributions of dose metrics and CT usage-related parameters were analyzed by category with descriptive statistic outcomes. Quantitative CT utilization factors (which measure average CT usage) for each interventional subcategory were derived by using total scan length, acquisition count, and number of images. Results Interventional CT scans have distinctly different dose metric characteristics from diagnostic CT scans. Wide variations of dose metrics were observed among subcategories, even within the same major category. For the most frequently performed CT-guided interventional procedures within each major category, liver ablation, chest aspiration, liver biopsy, and single abdominal drainage, the median dose-length product was 2351, 657, 1175, and 1125 mGy ∙ cm, respectively. Procedure-specific CT utilization factors ranged between 0.6 and 3.6. Conclusion This study provides procedure-specific CT dose metric distributions and quantitative CT utilization factors on the basis of a large number of procedures and categorization of CT-guided interventional procedures. © RSNA, 2018.


Subject(s)
Radiation Dosage , Radiography, Interventional , Tomography, X-Ray Computed , Adolescent , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Phantoms, Imaging , Radiography, Interventional/methods , Radiography, Interventional/statistics & numerical data , Retrospective Studies , Tomography, X-Ray Computed/methods , Tomography, X-Ray Computed/statistics & numerical data , Young Adult
3.
Med Phys ; 45(4): 1425-1432, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29431862

ABSTRACT

PURPOSE: The purpose of the study was to measure, evaluate, and model the broad-beam x-ray transmission of the patient supports from representative modern fluoroscopy-guided interventional systems, for patient skin dose calculation. METHODS: Broad-beam transmission was evaluated by varying incident angle, kVp, added copper (Cu) filter, and x-ray field size for three fluoroscopy systems: General Electric (GE) Innova 4100 with Omega V table and pad, Siemens Axiom Artis with Siemens tabletop "narrow" (CARD) table and pad, and Siemens Zeego with Trumpf TruSystem 7500 table and pad. Field size was measured on the table using a lead ruler for all setups in this study. Exposure rates were measured in service mode using a calibrated Radcal 10 × 6-60 ion chamber above the patient support at the assumed skin location. Broad-beam transmission factors were calculated by the ratio of air kerma rates measured with and without a patient support in the beam path. First, angle dependency was investigated on the GE system, with the chamber at isocenter, for angles of 0°, 15°, 30°, and 40°, for a variety of kVp, added Cu filters, and for two field sizes (small and large). Second, the broad-beam transmission factor at normal incidence was evaluated for all three fluoroscopes by varying kVp, added Cu filter, and field size (small, medium, and large). An analytical equation was created to fit the data as to maximize R2 and minimize maximum percentage difference across all measurements for each system. RESULTS: For all patient supports, broad-beam transmission factor increased with field size, kVp, and added Cu filtration and decreased with incident angle. Oblique incidence measurements show that the transmission decreased by about 1%, 3%, and 6% for incident angles of 15°, 30°, and 40°, respectively. The broad-beam transmission factors at 0° for the table and table plus pad ranged from 0.73 to 0.96 and from 0.59 to 0.89, respectively. The GE and Siemens transmission factors were comparable, while the Trumpf transmission factors were the lowest. The data were successfully fitted to a function of angle, field size, kVp, and added Cu filtration using nine parameters, with an average R2 value of 0.977 and maximum percentage difference of 4.08%. CONCLUSIONS: This study evaluated the broad-beam transmission for three representative fluoroscopy systems and their dependency on angle, kVp, added Cu filter, and field size. The comprehensive data provided for patient support transmission will facilitate accurate calculation of peak skin dose (PSD) and may potentially be integrated into real-time and retrospective dose monitoring with access to Radiation Dose Structured Reports (RDSR) and radiation event data.


Subject(s)
Fluoroscopy , Image-Guided Biopsy/methods
4.
J Radiol Prot ; 37(2): 492-505, 2017 Jun 26.
Article in English | MEDLINE | ID: mdl-28397710

ABSTRACT

PURPOSE: To comprehensively compare four computed tomography (CT) scanner shielding design methods using RadShield, a Java-based graphical user interface (GUI). METHODS: RadShield, a floor plan based GUI, was extended to calculate air kerma and barrier thickness using accepted methods from the National Council on Radiation Protection and Measurements (NCRP), the British Institute of Radiology, and a method using isodose maps, for spatially distributed points beyond user defined barriers. For a stationary CT scanner, the overall shielding recommendations found using RadShield were also compared to those found by American Board of Radiology certified diagnostic medical physicists using the conventional NCRP dose length product method and the isodose map method. RESULTS: The results between methods differed significantly for calculation point locations beyond the gantry and to the rear of the gantry. Overall shielding design recommendations across the four methods yielded similar average air kerma and thickness values for the barriers. CONCLUSIONS: RadShield was extended to perform CT shielding design and proved reliable using four methods.


Subject(s)
Radiation Protection/instrumentation , Tomography, X-Ray Computed , Computer-Aided Design , Equipment Design , Facility Design and Construction , Humans , Models, Statistical , Phantoms, Imaging , Radiation Dosage , Scattering, Radiation
5.
Br J Radiol ; 90(1074): 20160931, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28402125

ABSTRACT

OBJECTIVE: To assess radiation dose for patients who received abdominal quantitative CT and to compare the midpoint dose [DL(0)] at the centre of a 1-cm scan length with the volume CT dose index (CTDIvol). Although the size-specific dose estimate (SSDE) proposed in The American Association of Physicists in Medicine Report No. 204 is not applicable for short-length scans, commercial dose-monitoring software, such as Radimetrics™ Enterprise Platform (Bayer HealthCare, Whippany, NJ), reports SSDE for all scans. SSDE was herein compared with DL(0). METHODS: Data were analyzed from 398 abdominal quantitative CT examinations in 165 males and 233 females. The CTDIvol was 4.66 mGy, and the scan length was 1 cm for all examinations. Radimetrics was used to extract patient diameter and SSDE. DL(0) was assessed using a previously reported method that takes into account both patient size and scan length. RESULTS: The mean patient diameter was 28.5 ± 6.3 cm (range, 16.5-46.6 cm); the mean SSDE was 6.22 ± 1.36 mGy (range, 3.12-9.42 mGy); and the mean DL(0) was 2.97 ± 0.95 mGy (range, 1.18-5.77 mGy). As patient diameter increased, the DL(0) to CTDIvol ratio decreased, ranging from 1.24 to 0.25; the DL(0) to SSDE ratio also decreased, ranging from 0.61 to 0.38. CONCLUSION: The dose to the patients from abdominal quantitative CT may be largely different from CTDIvol and SSDE. This study demonstrates the necessity of taking into account not only patient size but also scan length for evaluating the dose from short-length scans. Advances in knowledge: In CT examinations with 1-cm scan length, dose evaluation needs to take into account both patient size and scan length. An omission of either factor can result in an erroneous result.


Subject(s)
Radiation Dosage , Radiography, Abdominal/methods , Tomography, X-Ray Computed/methods , Adult , Aged , Female , Humans , Male , Middle Aged , Radiometry , Software , Time Factors
6.
J Appl Clin Med Phys ; 17(5): 509-522, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27685128

ABSTRACT

The purpose of this study was to introduce and describe the development of RadShield, a Java-based graphical user interface (GUI), which provides a base design that uniquely performs thorough, spatially distributed calculations at many points and reports the maximum air-kerma rate and barrier thickness for each barrier pursuant to NCRP Report 147 methodology. Semiautomated shielding design calculations are validated by two approaches: a geometry-based approach and a manual approach. A series of geometry-based equations were derived giv-ing the maximum air-kerma rate magnitude and location through a first derivative root finding approach. The second approach consisted of comparing RadShield results with those found by manual shielding design by an American Board of Radiology (ABR)-certified medical physicist for two clinical room situations: two adjacent catheterization labs, and a radiographic and fluoroscopic (R&F) exam room. RadShield's efficacy in finding the maximum air-kerma rate was compared against the geometry-based approach and the overall shielding recommendations by RadShield were compared against the medical physicist's shielding results. Percentage errors between the geometry-based approach and RadShield's approach in finding the magnitude and location of the maximum air-kerma rate was within 0.00124% and 14 mm. RadShield's barrier thickness calculations were found to be within 0.156 mm lead (Pb) and 0.150 mm lead (Pb) for the adjacent catheteriza-tion labs and R&F room examples, respectively. However, within the R&F room example, differences in locating the most sensitive calculation point on the floor plan for one of the barriers was not considered in the medical physicist's calculation and was revealed by the RadShield calculations. RadShield is shown to accurately find the maximum values of air-kerma rate and barrier thickness using NCRP Report 147 methodology. Visual inspection alone of the 2D X-ray exam distribution by a medical physicist may not be sufficient to accurately select the point of maximum air-kerma rate or barrier thickness.


Subject(s)
Computer Graphics , Models, Statistical , Radiation Protection/instrumentation , User-Computer Interface , Humans , Radiotherapy Dosage , Scattering, Radiation , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL
...