Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Curr Protoc ; 4(7): e1104, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39018010

ABSTRACT

Microplastics (MPs; 1 µm to 5 mm) are a persistent and pervasive environmental pollutant of emergent and increasing concern. Human exposure to MPs through food, water, and air has been documented and thus motivates the need for a better understanding of the biological implications of MP exposure. These impacts are dependent on the properties of MPs, including size, morphology, and chemistry, as well as the dose and route of exposure. This overview offers a perspective on the current methods used to assess the bioactivity of MPs. First, we discuss methods associated with MP bioactivity research with an emphasis on the variety of assays, exposure conditions, and reference MP particles that have been used. Next, we review the challenges presented by common instrumentation and laboratory materials, the lack of standardized reference materials, and the limited understanding of MP dosimetry. Finally, we propose solutions that can help increase the applicability and impact of future studies while reducing redundancy in the field. The excellent protocols published in this issue are intended to contribute toward standardizing the field so that the MP knowledge base grows from a reliable foundation. © 2024 Wiley Periodicals LLC.


Subject(s)
Environmental Exposure , Microplastics , Microplastics/toxicity , Humans , Environmental Exposure/adverse effects , Environmental Pollutants/toxicity , Environmental Monitoring/methods
2.
Res Sq ; 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37790388

ABSTRACT

During head and neck cancer treatment, off-target ionizing radiation damage to the salivary glands commonly causes a permanent loss of secretory function. Due to the resulting decrease in saliva production, patients have trouble eating, speaking and are predisposed to oral infections and tooth decay. While the radioprotective antioxidant drug Amifostine is FDA approved to prevent radiation-induced hyposalivation, it has intolerable side effects that limit its use, motivating the discovery of alternative therapeutics. To address this issue, we previously developed a salivary gland mimetic (SGm) tissue chip platform. Here, we leverage this SGm tissue chip for high-content drug discovery. First, we developed in-chip assays to quantify glutathione and cellular senescence (ß-galactosidase), which are biomarkers of radiation damage, and we validated radioprotection using WR-1065, the active form of Amifostine. Other reported radioprotective drugs including Edaravone, Tempol, N-acetylcysteine (NAC), Rapamycin, Ex-Rad, and Palifermin were also tested to validate the ability of the assays to detect cell damage and radioprotection. All of the drugs except NAC and Ex-Rad exhibited robust radioprotection. Next, a Selleck Chemicals library of 438 FDA-approved drugs was screened for radioprotection. We discovered 25 hits, with most of the drugs identified exhibiting mechanisms of action other than antioxidant activity. Hits were down-selected using EC50 values and pharmacokinetic and pharmacodynamic data from the PubChem database. This led us to test Phenylbutazone (anti-inflammatory), Enoxacin (antibiotic), and Doripenem (antibiotic) for in vivo radioprotection in mice using retroductal injections. Results confirm that Phenylbutazone and Enoxacin exhibited radioprotection equivalent to Amifostine. This body of work demonstrates the development and validation of assays using a SGm tissue chip platform for high-content drug screening and the successful in vitro discovery and in vivo validation of novel radioprotective drugs with non-antioxidant primary indications pointing to possible, yet unknown novel mechanisms of radioprotection.

3.
Sci Rep ; 13(1): 15992, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37749142

ABSTRACT

Nanoparticle (NP) skin exposure is linked to an increased prevalence of allergic contact dermatitis. In our prior studies using the mouse contact hypersensitivity (CHS) model, we reported that silica 20 nm (SiO2) NPs suppressed the allergic response and titanium dioxide NPs doped with manganese (mTiO2) exacerbated it. In this work, we conducted in vitro experiments using bone marrow-derived dendritic cells (BMDCs) to study the combinatorial effect of the potent 2,4-dinitrofluorobenzene (DNFB) hapten sensitizer with SiO2 and mTiO2 NPs on BMDC cytotoxicity, cytokine secretion and phenotype using the B7 family ligands. Results show that DNFB and mTiO2 behave similarly and exhibit proinflammatory characteristics while SiO2 promotes a naive phenotype. We observe that the B7-H3 (CD276) ligand is only expressed on CD80 + (B7-1) BMDCs. Results from adoptive transfer CHS studies, combined with BMDC phenotype analysis, point to the importance of PD-L2 expression in modulating the adaptive immune response. This work identifies metrics that can be used to predict the effects of NPs on contact allergy and to guide efforts to engineer cell-based therapies to induce hapten specific immune tolerance.


Subject(s)
Dermatitis, Allergic Contact , Silicon Dioxide , Animals , Mice , Dinitrofluorobenzene/toxicity , Immunomodulation , B7-1 Antigen , Disease Models, Animal , Dendritic Cells
4.
Res Sq ; 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37503107

ABSTRACT

Nanoparticle (NP) skin exposure is linked to the increased prevalence of allergic contact dermatitis. In prior studies using the mouse contact hypersensitivity (CHS) model, we reported that silica 20 nm (Si20nm) suppressed the allergic response and TiO2 doped with manganese (mTiO2) exacerbated it. In this work, we conducted in vitro experiments using bone marrow-derived dendritic cells (BMDCs) to study the combinatorial effect of the potent 2, 4-dinitrofluorobenzene (DNFB) hapten sensitizer with Si20nm and mTiO2 NPs on BMDC cytotoxicity, cytokine secretion and phenotype using the B7 family ligands. Results show that DNFB and mTiO2 behave similarly and exhibit proinflammatory characteristics while Si20nm promotes a naive phenotype. We observe that the B7-H3 (CD276) ligand is only expressed on CD80+ (B7-1) BMDC. Results from adoptive transfer CHS studies, combined with BMDC phenotype analysis, point to the importance of PD-L2 expression in modulating the adaptive immune response. This work identifies metrics that can be used to predict the effects of NPs on contact allergy and to guide efforts to engineer cell-based therapies to induce antigen specific immune tolerance.

5.
bioRxiv ; 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37503292

ABSTRACT

During head and neck cancer treatment, off-target ionizing radiation damage to the salivary glands commonly causes a permanent loss of secretory function. Due to the resulting decrease in saliva production, patients have trouble eating, speaking and are predisposed to oral infections and tooth decay. While the radioprotective antioxidant drug Amifostine is approved to prevent radiation-induced hyposalivation, it has intolerable side effects that limit its use, motivating the discovery of alternative therapeutics. To address this issue, we previously developed a salivary gland mimetic (SGm) tissue chip platform. Here, we leverage this SGm tissue chip for high-content drug discovery. First, we developed in-chip assays to quantify glutathione and cellular senescence (ß-galactosidase), which are biomarkers of radiation damage, and we validated radioprotection using WR-1065, the active form of Amifostine. Following validation, we tested other reported radioprotective drugs, including, Edaravone, Tempol, N-acetylcysteine (NAC), Rapamycin, Ex-Rad, and Palifermin, confirming that all drugs but NAC and Ex-Rad exhibited robust radioprotection. Next, a Selleck Chemicals library of 438 FDA-approved drugs was screened for radioprotection. We discovered 25 hits, with most of the drugs identified with mechanisms of action other than antioxidant activity. Hits were down-selected using EC 50 values and pharmacokinetics and pharmacodynamics data from the PubChem database leading to testing of Phenylbutazone (anti-inflammatory), Enoxacin (antibiotic), and Doripenem (antibiotic) for in vivo radioprotection in mice using retroductal injections. Results confirm that Phenylbutazone and Enoxacin exhibited equivalent radioprotection to Amifostine. This body of work demonstrates the development and validation of assays using a SGm tissue chip platform for high-content drug screening and the successful in vitro discovery and in vivo validation of novel radioprotective drugs with nonantioxidant primary indications pointing to possible, yet unknown novel mechanisms of radioprotection.

6.
Acta Biomater ; 166: 187-200, 2023 08.
Article in English | MEDLINE | ID: mdl-37150277

ABSTRACT

We recently developed a salivary gland tissue mimetic (SGm), comprised of salivary gland cells encapsulated in matrix metalloproteinase (MMP)-degradable poly(ethylene glycol) hydrogels within arrays of ∼320 µm diameter spherical cavities molded in PDMS. The SGm provides a functional and physiologically relevant platform well-suited to high-throughput drug screening for radioprotective compounds. However, the utility of the SGm would benefit from improved retention of acinar cell phenotype and function. We hypothesized that tuning biochemical cues presented within the PEG hydrogel matrix would improve maintenance of acinar cell phenotype and function by mimicking the natural extracellular matrix microenvironment of the intact gland. Hydrogels formed using slower-degrading MMP-sensitive peptide crosslinkers showed >2-fold increase in sphere number formed at 48 h, increased expression of acinar cell markers, and more robust response to calcium stimulation by the secretory agonist, carbachol, with reduced SGm tissue cluster disruption and outgrowth during prolonged culture. The incorporation of adhesive peptides containing RGD or IKVAV improved calcium flux response to secretory agonists at 14 days of culture. Tuning the hydrogel matrix improved cell aggregation, and promoted acinar cell phenotype, and stability of the SGm over 14 days of culture. Furthermore, combining this matrix with optimized media conditions synergistically prolonged the retention of the acinar cell phenotype in SGm. STATEMENT OF SIGNIFICANCE: Salivary gland (SG) dysfunction occurs due to off-target radiation due to head and neck cancer treatments. Progress in understanding gland dysfunction and developing therapeutic strategies for the SG are hampered by the lack of in vitro models, as salivary gland cells rapidly lose critical secretory function within 24 hours in vitro. Herein, we identify properties of poly(ethylene glycol) hydrogel matrices that enhance the secretory phenotype of SG tissue mimetics within the previously-described SG-microbubble tissue chip environment. Combining slow-degrading hydrogels with media conditions optimized for secretory marker expression further enhanced functional secretory response and secretory marker expression.


Subject(s)
Calcium , Hydrogels , Hydrogels/pharmacology , Hydrogels/chemistry , Calcium/metabolism , Salivary Glands , Phenotype , Extracellular Matrix/metabolism , Peptides/pharmacology , Peptides/chemistry , Biocompatible Materials/metabolism , Polyethylene Glycols/pharmacology , Polyethylene Glycols/chemistry
7.
Cells ; 11(12)2022 06 18.
Article in English | MEDLINE | ID: mdl-35741092

ABSTRACT

The development of therapies to prevent or treat salivary gland dysfunction has been limited by a lack of functional in vitro models. Specifically, critical markers of salivary gland secretory phenotype downregulate rapidly ex vivo. Here, we utilize a salivary gland tissue chip model to conduct a design of experiments (DoE) approach to test combinations of seven soluble cues that were previously shown to maintain or improve salivary gland cell function. This approach uses statistical techniques to improve efficiency and accuracy of combinations of factors. The DoE-designed culture conditions improve markers of salivary gland function. Data show that the EGFR inhibitor, EKI-785, maintains relative mRNA expression of Mist1, a key acinar cell transcription factor, while FGF10 and neurturin promote mRNA expression of Aqp5 and Tmem16a, channel proteins involved in secretion. Mist1 mRNA expression correlates with increased secretory function, including calcium signaling and mucin (PAS-AB) staining. Overall, this study demonstrates that media conditions can be efficiently optimized to support secretory function in vitro using a DoE approach.


Subject(s)
Cues , Salivary Glands , Acinar Cells/metabolism , Calcium Signaling/physiology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Salivary Glands/metabolism
9.
Adv Healthc Mater ; 11(7): e2101948, 2022 04.
Article in English | MEDLINE | ID: mdl-34994104

ABSTRACT

Progress in the development of salivary gland regenerative strategies is limited by poor maintenance of the secretory function of salivary gland cells (SGCs) in vitro. To reduce the precipitous loss of secretory function, a modified approach to isolate intact acinar cell clusters and intercalated ducts (AIDUCs), rather than commonly used single cell suspension, is investigated. This isolation approach yields AIDUCs that maintain many of the cell-cell and cell-matrix interactions of intact glands. Encapsulation of AIDUCs in matrix metalloproteinase (MMP)-degradable PEG hydrogels promotes self-assembly into salivary gland mimetics (SGm) with acinar-like structure. Expression of Mist1, a transcription factor associated with secretory function, is detectable throughout the in vitro culture period up to 14 days. Immunohistochemistry also confirms expression of acinar cell markers (NKCC1, PIP and AQP5), duct cell markers (K7 and K5), and myoepithelial cell markers (SMA). Robust carbachol and ATP-stimulated calcium flux is observed within the SGm for up to 14 days after encapsulation, indicating that secretory function is maintained. Though some acinar-to-ductal metaplasia is observed within SGm, it is reduced compared to previous reports. In conclusion, cell-cell interactions maintained within AIDUCs together with the hydrogel microenvironment may be a promising platform for salivary gland regenerative strategies.


Subject(s)
Acinar Cells , Hydrogels , Acinar Cells/metabolism , Hydrogels/metabolism , Matrix Metalloproteinases/metabolism , Salivary Glands/metabolism
10.
Cells ; 10(7)2021 07 08.
Article in English | MEDLINE | ID: mdl-34359893

ABSTRACT

Salivary gland regeneration is important for developing treatments for radiation-induced xerostomia, Sjögren's syndrome, and other conditions that cause dry mouth. Culture conditions adopted from tissue engineering strategies have been used to recapitulate gland structure and function to study and regenerate the salivary glands. The purpose of this review is to highlight current trends in the field, with an emphasis on soluble factors that have been shown to improve secretory function in vitro. A PubMed search was conducted to identify articles published in the last 10 years and articles were evaluated to identify the most promising approaches and areas for further research. Results showed increasing use of extracellular matrix mimetics, such as Matrigel®, collagen, and a variety of functionalized polymers. Soluble factors that provide supportive cues, including fibroblast growth factors (FGFs) and neurotrophic factors, as well as chemical inhibitors of Rho-associated kinase (ROCK), epidermal growth factor receptor (EGFR), and transforming growth factor ß receptor (TGFßR) have shown increases in important markers including aquaporin 5 (Aqp5); muscle, intestine, and stomach expression 1 (Mist1); and keratin (K5). However, recapitulation of tissue function at in vivo levels is still elusive. A focus on identification of soluble factors, cells, and/or matrix cues tested in combination may further increase the maintenance of salivary gland secretory function in vitro. These approaches may also be amenable for translation in vivo to support successful regeneration of dysfunctional glands.


Subject(s)
Salivary Glands/physiology , Tissue Engineering/trends , Animals , Cell Culture Techniques , Humans , Salivary Glands/cytology
12.
Commun Biol ; 4(1): 361, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33742114

ABSTRACT

Radiation therapy for head and neck cancers causes salivary gland dysfunction leading to permanent xerostomia. Limited progress in the discovery of new therapeutic strategies is attributed to the lack of in vitro models that mimic salivary gland function and allow high-throughput drug screening. We address this limitation by combining engineered extracellular matrices with microbubble (MB) array technology to develop functional tissue mimetics for mouse and human salivary glands. We demonstrate that mouse and human salivary tissues encapsulated within matrix metalloproteinase-degradable poly(ethylene glycol) hydrogels formed in MB arrays are viable, express key salivary gland markers, and exhibit polarized localization of functional proteins. The salivary gland mimetics (SGm) respond to calcium signaling agonists and secrete salivary proteins. SGm were then used to evaluate radiosensitivity and mitigation of radiation damage using a radioprotective compound. Altogether, SGm exhibit phenotypic and functional parameters of salivary glands, and provide an enabling technology for high-content/throughput drug testing.


Subject(s)
Acinar Cells/drug effects , Drug Evaluation, Preclinical , High-Throughput Screening Assays , Radiation Injuries/prevention & control , Salivary Glands/drug effects , Tissue Array Analysis , Xerostomia/prevention & control , Acinar Cells/metabolism , Acinar Cells/radiation effects , Animals , Calcium Signaling/drug effects , Cells, Cultured , Female , Humans , Hydrogels , Male , Mice, Inbred C57BL , Microbubbles , Middle Aged , Parotid Gland/drug effects , Parotid Gland/metabolism , Parotid Gland/radiation effects , Phenotype , Polyethylene Glycols/chemistry , Radiation Injuries/etiology , Radiation Injuries/metabolism , Salivary Glands/metabolism , Salivary Glands/radiation effects , Xerostomia/etiology , Xerostomia/metabolism
13.
Open Access J Toxicol ; 4(3): 79-82, 2020 Jun.
Article in English | MEDLINE | ID: mdl-33163852

ABSTRACT

Microplastics are a pervasive environmental contaminant that have been found in many media including water sources, soils, and foodstuff. Due to the worldwide presence and persistence of microplastic debris, human exposure is inevitable. Human exposure occurs predominantly through ingestion, although dermal and inhalation exposures are probable. Microplastic single exposure studies in aquatic species and fish have shown various toxic effects including those on reproduction and survival. In addition to potential intrinsic toxicity, microplastics often have chemicals adsorbed to their surfaces. Studies report that these chemicals can have innate toxicity that is modulated by the composition of microplastics. Both the impacts of microplastics alone and co-exposures with adsorbed chemicals exhibit size dependent effects. Analysis of the current literature has revealed published studies predominantly investigate the toxicity of microplastic exposure in fish and other aquatic species, with limited knowledge about the effects in mammals and cell lines. Toxicity has been shown to vary widely between taxonomic groups, suggesting inferring human health relevance will require model systems where human routes of exposure can be mimicked. Although it may be difficult to extrapolate the results from aquatic model systems to relevant human health impacts, they may suggest effects to investigate. In order to best estimate the short- and long-term impacts of human microplastic exposure, it is imperative that studies in model systems with increased similarity to human anatomy and cellular processes be done.

14.
HSOA J Toxicol ; 4(1)2020.
Article in English | MEDLINE | ID: mdl-33163967

ABSTRACT

Titanium dioxide (TiO2) nanoparticles are commonly found in consumer products, such as sunscreens, and human dermal exposures are relatively high. Research suggests potential differences in the toxicity of anatase and rutile crystalline forms of TiO2. Additionally, transition metal dopants are frequently used to enhance physicochemical properties of TiO2, and the toxicity of these nanoparticles are not extensively studied. Therefore, this work examined the keratinocyte toxicity and in vivo skin allergy responses after treatment with 30 nm anatase, 30 nm rutile, or <100 nm Mn-doped TiO2 nanoparticles. After a 24-hour exposure, there were no differences in keratinocyte cytotoxicity; however, Mn-doped TiO2 nanoparticles induced significant in vitro ROS generation and in vivo skin swelling responses in a model of allergic contact dermatitis.

15.
Toxicol Sci ; 177(1): 188-201, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32603427

ABSTRACT

Ultraviolet radiation (UVR) is a consistent part of the environment that has both beneficial and harmful effects on human health. UVR filters in the form of commercial sunscreens have been widely used to reduce the negative health effects of UVR exposure. Despite their benefit, literature suggests that some filters can penetrate skin and have off-target biological effects. We noted that many organic filters are hydrophobic and contain aromatic rings, making them potential modulators of Aryl hydrocarbon Receptor (AhR) signaling. We hypothesized that some filters may be able to act as agonists or antagonists on the AhR. Using a luciferase reporter cell line, we observed that the UVR filter octinoxate potentiated the ability of the known AhR ligand, 6-formylindolo[3,2-b]carbazole (FICZ), to activate the AhR. Cotreatments of keratinocytes with octinoxate and FICZ lead to increased levels of cytochrome P4501A1 (CYP1A1) and P4501B1 (CYP1B1) mRNA transcripts, in an AhR-dependent fashion. Mechanistic studies revealed that octinoxate is an inhibitor of CYP1A1 and CYP1B1, with IC50 values at approximately 1 µM and 586 nM, respectively. In vivo topical application of octinoxate and FICZ also elevated CYP1A1 and CYP1B1 mRNA levels in mouse skin. Our results show that octinoxate is able to indirectly modulate AhR signaling by inhibiting CYP1A1 and CYP1B1 enzyme function, which may have important downstream consequences for the metabolism of various compounds and skin integrity. It is important to continue studying the off-target effects of octinoxate and other UVR filters, because they are used on skin on a daily basis world-wide.


Subject(s)
Cinnamates/toxicity , Cytochrome P-450 CYP1A1 , Receptors, Aryl Hydrocarbon , Cytochrome P-450 CYP1B1 , Keratinocytes , Ultraviolet Rays
16.
Sustainability ; 12(24)2020 Dec 02.
Article in English | MEDLINE | ID: mdl-36938128

ABSTRACT

To better understand the origin of microplastics in municipal drinking water, we evaluated 50 mL water samples from different stages of the City of Rochester's drinking water production and transport route, from Hemlock Lake to the University of Rochester. We directly filtered samples using silicon nitride nanomembrane filters with precisely patterned slit-shaped pores, capturing many of the smallest particulates (<20 µm) that could be absorbed by the human body. We employed machine learning algorithms to quantify the shapes and quantity of debris at different stages of the water transport process, while automatically segregating out fibrous structures from particulate. Particulate concentrations ranged from 13 to 720 particles/mL at different stages of the water transport process and fibrous pollution ranged from 0.4 to 8.3 fibers/mL. A subset of the debris (0.2-8.6%) stained positively with Nile red dye which identifies them as hydrophobic polymers. Further spectroscopic analysis also indicated the presence of many non-plastic particulates, including rust, silicates, and calcium scale. While water leaving the Hemlock Lake facility is mostly devoid of debris, transport through many miles of piping results in the entrainment of a significant amount of debris, including plastics, although in-route reservoirs and end-stage filtration serve to reduce these concentrations.

17.
Sci Rep ; 9(1): 5085, 2019 03 25.
Article in English | MEDLINE | ID: mdl-30911099

ABSTRACT

Amorphous silicon dioxide nanoparticles (SiNPs) are ubiquitous, and they are currently found in cosmetics, drugs, and foods. Biomedical research is also focused on using these nanoparticles as drug delivery and bio-sensing platforms. Due to the high potential for skin exposure to SiNPs, research into the effect of topical exposure on both healthy and inflammatory skin models is warranted. While we observe only minimal effects of SiNPs on healthy mouse skin, there is an immunomodulatory effect of these NPs in a model of allergic contact dermatitis. The effect appears to be mediated partly by keratinocytes and results in decreases in epidermal hyperplasia, inflammatory cytokine release, immune cell infiltration, and a subsequent reduction in skin swelling. Additional research is required to further our mechanistic understanding and to validate the extent of this immunomodulatory effect in human subjects in order to assess the potential prophylactic use of SiNPs for treating allergic skin conditions.


Subject(s)
Cytokines/metabolism , Dermatitis, Allergic Contact/drug therapy , Dermatitis, Allergic Contact/immunology , Immunologic Factors/therapeutic use , Keratinocytes/drug effects , Keratinocytes/metabolism , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Silicon Dioxide/chemistry , Silicon Dioxide/therapeutic use , Animals , Female , Immunologic Factors/chemistry , Male , Mice , Mice, Inbred C57BL , Microscopy, Electron, Transmission
18.
Part Fibre Toxicol ; 16(1): 3, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30621720

ABSTRACT

BACKGROUND: The effects of carbon nanotubes on skin toxicity have not been extensively studied; however, our lab has previously shown that a carboxylated multi-walled carbon nanotube (MWCNT) exacerbates the 2, 4-dinitrofluorobenzene induced contact hypersensitivity response in mice. Here we examine the role of carboxylation in MWCNT skin toxicity. RESULTS: MWCNTs were analyzed by transmission electron microscopy, zetasizer, and x-ray photoelectron spectroscopy to fully characterize the physical properties. Two MWCNTs with different levels of surface carboxylation were chosen for further testing. The MWCNTs with a high level of carboxylation displayed increased cytotoxicity in a HaCaT keratinocyte cell line, compared to the MWCNTs with intermediate levels of carboxylation. However, neither functionalized MWCNT increased the level of in vitro reactive oxygen species suggesting an alternative mechanism of cytotoxicity. Each MWCNT was tested in the contact hypersensitivity model, and only the MWCNTs with greater than 20% surface carboxylation exacerbated the ear swelling responses. Analysis of the skin after MWCNT exposure reveals that the same MWCNTs with a high level of carboxylation increase epidermal thickness, mast cell and basophil degranulation, and lead to increases in polymorphonuclear cell recruitment when co-administered with 2, 4-dinitrofluorobenzene. CONCLUSIONS: The data presented here suggest that acute, topical application of low doses of MWCNTs can induce keratinocyte cytotoxicity and exacerbation of allergic skin conditions in a carboxylation dependent manner.


Subject(s)
Dermatitis, Contact/etiology , Keratinocytes/drug effects , Nanotubes, Carbon/toxicity , Skin/drug effects , Animals , Carboxylic Acids/chemistry , Cell Degranulation/drug effects , Cell Degranulation/immunology , Cell Line , Cell Survival/drug effects , Cytokines/immunology , Dermatitis, Contact/immunology , Dermatitis, Contact/pathology , Dinitrofluorobenzene/toxicity , Edema/chemically induced , Edema/immunology , Edema/pathology , Humans , Keratinocytes/immunology , Keratinocytes/pathology , Mice, Hairless , Mice, Inbred C57BL , Nanotubes, Carbon/chemistry , Neutrophil Infiltration/drug effects , Oxidation-Reduction , Skin/immunology , Skin/pathology
19.
Sci Rep ; 7(1): 3979, 2017 06 21.
Article in English | MEDLINE | ID: mdl-28638049

ABSTRACT

In recent years there has been considerable effort to understand the interaction of nanomaterials with the skin. In this study we use an in vivo mouse model of allergic contact dermatitis to investigate how nanoparticles (NPs) may alter allergic responses in skin. We investigate a variety of NPs that vary in size, charge and composition. Results show that small (<200 nm) negative and neutral charged NPs exhibit an immunosuppressive effect but that positively charged NPs do not. Confocal imaging suggests positively charged NPs may penetrate skin to a lesser extent and thereby are less able interact with and alter the local immune responses. Interestingly, negatively charged silica (20 nm) NPs suppress allergic response to two chemically distinct sensitizers; 1-fluoro-2, 4-dinitrobenzene and 2-deoxyurushiol. Skin wiping and NP application time studies suggest that the immunomodulatory mechanism is not due solely to the blocking of sensitizer adduct formation in skin. Results suggest that NPs modulate early immune events that impact mast cell degranulation. Our study shows for the first time the potential to modulate the elicitation phase of the allergic response which depends on the NP charge and composition. These finding can be used to inform the design topical therapeutics to mitigate allergic responses in skin.


Subject(s)
Dermatitis, Allergic Contact/immunology , Immunomodulation , Nanoparticles/administration & dosage , Animals , Dinitrofluorobenzene/administration & dosage , Disease Models, Animal , Female , Male , Mast Cells/immunology , Mice, Hairless , Mice, Inbred C57BL , Nanoparticles/chemistry , Skin Absorption
20.
Part Fibre Toxicol ; 14(1): 12, 2017 04 14.
Article in English | MEDLINE | ID: mdl-28410606

ABSTRACT

BACKGROUND: Previous work has demonstrated size, surface charge and skin barrier dependent penetration of nanoparticles into the viable layers of mouse skin. The goal of this work was to characterize the tissue distribution and mechanism of transport of nanoparticles beyond skin, with and without Ultraviolet Radiation (UVR) induced skin barrier disruption. Atomic absorption spectroscopy (AAS), flow cytometry and confocal microscopy were used to examine the effect of UVR dose (180 and 360 mJ/cm2 UVB) on the skin penetration and systemic distribution of quantum dot (QD) nanoparticles topically applied at different time-points post UVR using a hairless C57BL/6 mouse model. RESULTS: Results indicate that QDs can penetrate mouse skin, regardless of UVR exposure, as evidenced by the increased cadmium in the local lymph nodes of all QD treated mice. The average % recovery for all treatment groups was 69.68% with ~66.84% of the applied dose recovered from the skin (both epicutaneous and intracutaneous). An average of 0.024% of the applied dose was recovered from the lymph nodes across various treatment groups. When QDs are applied 4 days post UV irradiation, at the peak of the skin barrier defect and LC migration to the local lymph node, there is an increased cellular presence of QD in the lymph node; however, AAS analysis of local lymph nodes display no difference in cadmium levels due to UVR treatment. CONCLUSIONS: Our data suggests that Langerhans cells (LCs) can engulf QDs in skin, but transport to the lymph node may occur by both cellular (dendritic and macrophage) and non-cellular mechanisms. It is interesting that these specific nanoparticles were retained in skin similarly regardless of UVR barrier disruption, but the observed skin immune cell interaction with nanoparticles suggest a potential for immunomodulation, which we are currently examining in a murine model of skin allergy.


Subject(s)
Quantum Dots/metabolism , Skin Absorption/radiation effects , Skin/metabolism , Ultraviolet Rays/adverse effects , Administration, Cutaneous , Animals , Biological Transport , Cell Movement , Langerhans Cells/drug effects , Langerhans Cells/metabolism , Lymph Nodes/drug effects , Lymph Nodes/metabolism , Mice, Hairless , Mice, Inbred C57BL , Radiation Dosage , Skin/drug effects , Skin/radiation effects , Skin Absorption/drug effects , Time Factors , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...