Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 10(4): eadh2598, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38266090

ABSTRACT

Candidate cardiomyocyte (CM) mitogens such as those affecting the extracellular signal-regulated kinase (ERK) signaling pathway represent potential targets for functional heart regeneration. We explored whether activating ERK via a constitutively active mutant of B-raf proto-oncogene (BRAF), BRAF-V600E (caBRAF), can induce proproliferative effects in neonatal rat engineered cardiac tissues (ECTs). Sustained CM-specific caBRAF expression induced chronic ERK activation, substantial tissue growth, deficit in sarcomeres and contractile function, and tissue stiffening, all of which persisted for at least 4 weeks of culture. caBRAF-expressing CMs in ECTs exhibited broad transcriptomic changes, shift to glycolytic metabolism, loss of connexin-43, and a promigratory phenotype. Transient, doxycycline-controlled caBRAF expression revealed that the induction of CM cycling is rapid and precedes functional decline, and the effects are reversible only with short-lived ERK activation. Together, direct activation of the BRAF kinase is sufficient to modulate CM cycling and functional phenotype, offering mechanistic insights into roles of ERK signaling in the context of cardiac development and regeneration.


Subject(s)
Myocardium , Proto-Oncogene Proteins B-raf , Animals , Rats , Proto-Oncogene Proteins B-raf/genetics , Myocytes, Cardiac , Extracellular Signal-Regulated MAP Kinases , Signal Transduction
3.
Development ; 150(16)2023 08 15.
Article in English | MEDLINE | ID: mdl-37526609

ABSTRACT

Developmentally programmed polyploidy (whole-genome duplication) of cardiomyocytes is common across evolution. Functions of such polyploidy are essentially unknown. Here, in both Drosophila larvae and human organ donors, we reveal distinct polyploidy levels in cardiac organ chambers. In Drosophila, differential growth and cell cycle signal sensitivity leads the heart chamber to reach a higher ploidy/cell size relative to the aorta chamber. Cardiac ploidy-reduced animals exhibit reduced heart chamber size, stroke volume and cardiac output, and acceleration of circulating hemocytes. These Drosophila phenotypes mimic human cardiomyopathies. Our results identify productive and likely conserved roles for polyploidy in cardiac chambers and suggest that precise ploidy levels sculpt many developing tissues. These findings of productive cardiomyocyte polyploidy impact efforts to block developmental polyploidy to improve heart injury recovery.


Subject(s)
Drosophila , Myocytes, Cardiac , Animals , Humans , Polyploidy , Ploidies , Cell Cycle
4.
bioRxiv ; 2023 Feb 11.
Article in English | MEDLINE | ID: mdl-36798187

ABSTRACT

Developmentally programmed polyploidy (whole-genome-duplication) of cardiomyocytes is common across evolution. Functions of such polyploidy are essentially unknown. Here, we reveal roles for precise polyploidy levels in cardiac tissue. We highlight a conserved asymmetry in polyploidy level between cardiac chambers in Drosophila larvae and humans. In Drosophila , differential Insulin Receptor (InR) sensitivity leads the heart chamber to reach a higher ploidy/cell size relative to the aorta chamber. Cardiac ploidy-reduced animals exhibit reduced heart chamber size, stroke volume, cardiac output, and acceleration of circulating hemocytes. These Drosophila phenotypes mimic systemic human heart failure. Using human donor hearts, we reveal asymmetry in nuclear volume (ploidy) and insulin signaling between the left ventricle and atrium. Our results identify productive and likely conserved roles for polyploidy in cardiac chambers and suggest precise ploidy levels sculpt many developing tissues. These findings of productive cardiomyocyte polyploidy impact efforts to block developmental polyploidy to improve heart injury recovery.

5.
Cell Stem Cell ; 30(1): 96-111.e6, 2023 01 05.
Article in English | MEDLINE | ID: mdl-36516837

ABSTRACT

The efficacy and safety of gene-therapy strategies for indications like tissue damage hinge on precision; yet, current methods afford little spatial or temporal control of payload delivery. Here, we find that tissue-regeneration enhancer elements (TREEs) isolated from zebrafish can direct targeted, injury-associated gene expression from viral DNA vectors delivered systemically in small and large adult mammalian species. When employed in combination with CRISPR-based epigenome editing tools in mice, zebrafish TREEs stimulated or repressed the expression of endogenous genes after ischemic myocardial infarction. Intravenously delivered recombinant AAV vectors designed with a TREE to direct a constitutively active YAP factor boosted indicators of cardiac regeneration in mice and improved the function of the injured heart. Our findings establish the application of contextual enhancer elements as a potential therapeutic platform for spatiotemporally controlled tissue regeneration in mammals.


Subject(s)
Enhancer Elements, Genetic , Genetic Therapy , Heart , Myocardial Infarction , Myocytes, Cardiac , Regeneration , Animals , Mice , Cell Proliferation , Heart/physiology , Myocardial Infarction/genetics , Myocardial Infarction/therapy , Myocytes, Cardiac/metabolism , Zebrafish/genetics , Genetic Therapy/methods , Regeneration/genetics
6.
Methods Mol Biol ; 2485: 1-13, 2022.
Article in English | MEDLINE | ID: mdl-35618895

ABSTRACT

CRISPR-Cas9-based screening technologies enable precise, high-throughput genetic and epigenetic manipulation to study mechanisms of development and disease and identify new therapeutic targets. Here, we describe a general protocol for the generation of custom, pooled CRISPR sgRNA libraries for screening in cardiomyocyte cultures. This methodology can address a variety of lab-specific research questions in cardiomyocytes and other cell types, as the genes to be modified can be curated or whole genomes can be investigated. The use of lentiviral sgRNA delivery followed by high-throughput sequencing allows for rapid comparison and identification of candidate genes and epigenetic modifiers, which can be further validated individually or in sub-pooled libraries following screening.


Subject(s)
CRISPR-Cas Systems , Myocytes, Cardiac , Gene Library , Genome , High-Throughput Nucleotide Sequencing
7.
Front Cardiovasc Med ; 9: 833335, 2022.
Article in English | MEDLINE | ID: mdl-35224061

ABSTRACT

BACKGROUND: The optimal delivery route to enhance effectiveness of regenerative therapeutics to the human heart is poorly understood. Direct intra-myocardial (IM) injection is the gold standard, however, it is relatively invasive. We thus compared targeted IM against less invasive, catheter-based intra-coronary (IC) delivery to porcine myocardium for the acute retention of nanoparticles using cardiac magnetic resonance (CMR) imaging and viral vector transduction using qPCR. METHODS: Ferumoxytol iron oxide (IO) nanoparticles (5 ml) were administered to Yorkshire swine (n = 13) by: (1) IM via thoracotomy, (2) catheter-based IC balloon-occlusion (BO) with infusion into the distal left anterior descending (LAD) coronary artery, (3) IC perforated side-wall (SW) infusion into the LAD, or (4) non-selective IC via left main (LM) coronary artery infusion. Hearts were harvested and imaged using at 3T whole-body MRI scanner. In separate Yorkshire swine (n = 13), an adeno-associated virus (AAV) vector was similarly delivered, tissue harvested 4-6 weeks later, and viral DNA quantified from predefined areas at risk (apical LV/RV) vs. not at risk in a potential mid-LAD infarct model. Results were analyzed using pairwise Student's t-test. RESULTS: IM delivery yielded the highest IO retention (16.0 ± 4.6% of left ventricular volume). Of the IC approaches, BO showed the highest IO retention (8.7 ± 2.2% vs. SW = 5.5 ± 4.9% and LM = 0%) and yielded consistent uptake in the porcine distal LAD territory, including the apical septum, LV, and RV. IM delivery was limited to the apex and anterior wall, without septal retention. For the AAV delivery, the BO was most efficient in the at risk territory (Risk: BO = 6.0 × 10-9, IM = 1.4 × 10-9, LM = 3.2 × 10-10 viral copies per µg genomic DNA) while all delivery routes were comparable in the non-risk territory (BO = 1.7 × 10-9, IM = 8.9 × 10-10, LM = 1.2 × 10-9). CONCLUSIONS: Direct IM injection has the highest local retention, while IC delivery with balloon occlusion and distal infusion is the most effective IC delivery technique to target therapeutics to a heart territory most in risk from an infarct.

8.
Nat Commun ; 13(1): 620, 2022 02 02.
Article in English | MEDLINE | ID: mdl-35110560

ABSTRACT

Therapies for cardiac arrhythmias could greatly benefit from approaches to enhance electrical excitability and action potential conduction in the heart by stably overexpressing mammalian voltage-gated sodium channels. However, the large size of these channels precludes their incorporation into therapeutic viral vectors. Here, we report a platform utilizing small-size, codon-optimized engineered prokaryotic sodium channels (BacNav) driven by muscle-specific promoters that significantly enhance excitability and conduction in rat and human cardiomyocytes in vitro and adult cardiac tissues from multiple species in silico. We also show that the expression of BacNav significantly reduces occurrence of conduction block and reentrant arrhythmias in fibrotic cardiac cultures. Moreover, functional BacNav channels are stably expressed in healthy mouse hearts six weeks following intravenous injection of self-complementary adeno-associated virus (scAAV) without causing any adverse effects on cardiac electrophysiology. The large diversity of prokaryotic sodium channels and experimental-computational platform reported in this study should facilitate the development and evaluation of BacNav-based gene therapies for cardiac conduction disorders.


Subject(s)
Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/therapy , Muscle Proteins/genetics , Myocytes, Cardiac/physiology , Voltage-Gated Sodium Channels/metabolism , Action Potentials/physiology , Animals , Cardiac Electrophysiology , Female , Genetic Therapy , HEK293 Cells , Humans , Male , Mice , Muscle Proteins/metabolism , NAV1.5 Voltage-Gated Sodium Channel/genetics , NAV1.5 Voltage-Gated Sodium Channel/metabolism , Rats , Rats, Sprague-Dawley , Voltage-Gated Sodium Channels/genetics
9.
Elife ; 102021 10 19.
Article in English | MEDLINE | ID: mdl-34665129

ABSTRACT

Multiple mitogenic pathways capable of promoting mammalian cardiomyocyte (CM) proliferation have been identified as potential candidates for functional heart repair following myocardial infarction. However, it is unclear whether the effects of these mitogens are species-specific and how they directly compare in the same cardiac setting. Here, we examined how CM-specific lentiviral expression of various candidate mitogens affects human induced pluripotent stem cell-derived CMs (hiPSC-CMs) and neonatal rat ventricular myocytes (NRVMs) in vitro. In 2D-cultured CMs from both species, and in highly mature 3D-engineered cardiac tissues generated from NRVMs, a constitutively active mutant form of the human gene Erbb2 (cahErbb2) was the most potent tested mitogen. Persistent expression of cahErbb2 induced CM proliferation, sarcomere loss, and remodeling of tissue structure and function, which were attenuated by small molecule inhibitors of Erk signaling. These results suggest transient activation of Erbb2/Erk axis in CMs as a potential strategy for regenerative heart repair.


Subject(s)
Cell Proliferation/drug effects , Myocytes, Cardiac/drug effects , Receptor, ErbB-2/metabolism , Signal Transduction/physiology , Animals , Cells, Cultured , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation , Humans , Induced Pluripotent Stem Cells , Myocytes, Cardiac/physiology , Rats , Receptor, ErbB-2/genetics , Regeneration
SELECTION OF CITATIONS
SEARCH DETAIL
...