Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
2.
Nature ; 624(7990): 109-114, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37938778

ABSTRACT

There are two main life cycles in plants-annual and perennial1,2. These life cycles are associated with different traits that determine ecosystem function3,4. Although life cycles are textbook examples of plant adaptation to different environments, we lack comprehensive knowledge regarding their global distributional patterns. Here we assembled an extensive database of plant life cycle assignments of 235,000 plant species coupled with millions of georeferenced datapoints to map the worldwide biogeography of these plant species. We found that annual plants are half as common as initially thought5-8, accounting for only 6% of plant species. Our analyses indicate that annuals are favoured in hot and dry regions. However, a more accurate model shows that the prevalence of annual species is driven by temperature and precipitation in the driest quarter (rather than yearly means), explaining, for example, why some Mediterranean systems have more annuals than desert systems. Furthermore, this pattern remains consistent among different families, indicating convergent evolution. Finally, we demonstrate that increasing climate variability and anthropogenic disturbance increase annual favourability. Considering future climate change, we predict an increase in annual prevalence for 69% of the world's ecoregions by 2060. Overall, our analyses raise concerns for ecosystem services provided by perennial plants, as ongoing changes are leading to a higher proportion of annual plants globally.


Subject(s)
Ecosystem , Geographic Mapping , Phylogeography , Plant Physiological Phenomena , Plants , Acclimatization , Biological Evolution , Climate Change/statistics & numerical data , Databases, Factual , Desert Climate , Human Activities , Mediterranean Region , Plants/classification , Rain , Temperature
3.
Am Nat ; 200(2): 193-201, 2022 08.
Article in English | MEDLINE | ID: mdl-35905401

ABSTRACT

AbstractResource competition theory predicts coexistence and exclusion patterns based on species' R*s, the minimum resource values required for a species to persist. A central assumption of the theory is that all species have equal access to resources. However, many systems are characterized by preemption exploitation, where some species deplete resources before their competitors can access them (e.g., asymmetric light competition, contest competition among animals). We hypothesized that coexistence under preemption requires an R*-preemption trade-off-that is, the species with the priority access should have a higher R* (lower "efficiency"). Thus, we developed an extension of resource competition theory to investigate partial and total preemption (in the latter, the preemptor is unaffected by species with lower preemption rank). We found that an R*-preemption trade-off is a necessary condition for coexistence in all models. Moreover, under total preemption, the trade-off alone is sufficient for coexistence. In contrast, under partial preemption, more conditions are needed, which restricts the parameter space of coexistence. Finally, we discuss the implications of our finding for seemingly distinct trade-offs, which we view as special cases of the R*-preemption trade-off. These trade-offs include the digger-grazer trade-off, the competition-colonization trade-off, and trade-offs related to light competition between trees and understories.


Subject(s)
Ecosystem , Trees , Animals , Models, Biological
4.
Proc Natl Acad Sci U S A ; 119(10): e2112010119, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35235460

ABSTRACT

Eutrophication is a major driver of species loss in plant communities worldwide. However, the underlying mechanisms of this phenomenon are controversial. Previous studies have raised three main explanations: 1) High levels of soil resources increase standing biomass, thereby intensifying competitive interactions (the "biomass-driven competition hypothesis"). 2) High levels of soil resources reduce the potential for resource-based niche partitioning (the "niche dimension hypothesis"). 3) Increasing soil nitrogen causes stress by changing the abiotic or biotic conditions (the "nitrogen detriment hypothesis"). Despite several syntheses of resource addition experiments, so far, no study has tested all of the hypotheses together. This is a major shortcoming, since the mechanisms underlying the three hypotheses are not independent. Here, we conduct a simultaneous test of the three hypotheses by integrating data from 630 resource addition experiments located in 99 sites worldwide. Our results provide strong support for the nitrogen detriment hypothesis, weaker support for the biomass-driven competition hypothesis, and negligible support for the niche dimension hypothesis. The results further show that the indirect effect of nitrogen through its effect on biomass is minor compared to its direct effect and is much larger than that of all other resources (phosphorus, potassium, and water). Thus, we conclude that nitrogen-specific mechanisms are more important than biomass or niche dimensionality as drivers of species loss under high levels of soil resources. This conclusion is highly relevant for future attempts to reduce biodiversity loss caused by global eutrophication.


Subject(s)
Biodiversity , Biomass , Fertilizers , Grassland , Nitrogen
5.
Ecology ; 103(1): e03567, 2022 01.
Article in English | MEDLINE | ID: mdl-34674221

ABSTRACT

Ecological selection is a major driver of community assembly. Selection is classified as stabilizing when species with intermediate trait values gain the highest reproductive success, whereas selection is considered directional when fitness is highest for species with extreme trait values. Previous studies have investigated the effects of different selection types on trait distribution, but the effects of selection on species diversity have remained unclear. Here, we propose a framework for inferring the type and strength of selection by studying species diversity and trait distribution together against null expectations. We use a simulation model to confirm our prediction that directional selection should lead to lower species diversity than stabilizing selection despite a similar effect on trait community-weighted variance. We apply the framework to a mesocosm system of annual plants to test whether differences in species diversity between two habitats that vary in productivity are related to differences in selection on seed mass. We show that, in both habitats, species diversity was lower than the null expectation, but that species diversity was lower in the more productive habitat. We attribute this difference to strong directional selection for large-seeded species in the productive habitat as indicated by trait community-weighted mean being higher and community-weighted variance being lower than the null expectations. In the less productive habitat, we found that community-weighted variance was higher than expected by chance, suggesting that seed mass could be a driver of niche partitioning under such conditions. Altogether, our results suggest that viewing species diversity and trait distribution as interrelated patterns driven by the same process, ecological selection, is helpful in understanding community assembly.


Subject(s)
Ecosystem , Plants , Biodiversity , Phenotype , Reproduction , Seeds
6.
Am Nat ; 198(2): E27-E36, 2021 08.
Article in English | MEDLINE | ID: mdl-34260874

ABSTRACT

AbstractLife-history trade-offs among species are major drivers of community assembly. Most studies investigate how trade-offs promote deterministic coexistence of species. It remains unclear how trade-offs may instead promote historically contingent exclusion of species, where species dominance is affected by initial abundances, causing alternative community states via priority effects. Focusing on the establishment-longevity trade-off, in which high longevity is associated with low competitive ability during establishment, we study the transient dynamics and equilibrium outcomes of competitive interactions in a simulation model of plant community assembly. We show that in this model, the establishment-longevity trade-off is a necessary but not sufficient condition for alternative stable equilibria, which also require low fecundity for both species. An analytical approximation of our simulation model demonstrates that alternative stable equilibria are driven by demographic stochasticity in the number of seeds arriving at each establishment site. This site-scale stochasticity is affected only by fecundity and therefore occurs even in infinitely large communities. In many cases where the establishment-longevity trade-off does not cause alternative stable equilibria, the trade-off still decreases the rate of convergence toward the single equilibrium, resulting in decades of transient dynamics that can appear indistinguishable from alternative stable equilibria in empirical studies.


Subject(s)
Ecosystem , Fertility , Computer Simulation , Demography , Models, Biological
7.
Glob Ecol Biogeogr ; 28(3): 290-299, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30886537

ABSTRACT

AIM: Species-area relationships (also known as 'species-area curves' and 'species accumulation curves') represent the relationship between species richness and the area sampled in a given community. These relationships can be used to describe diversity patterns while accounting for the well-known scale-dependence of species richness. Despite their value, their functional form and parameters, as well as their determinants, have barely been investigated in drylands. LOCATION: 171 drylands from all continents except Antarctica. TIME PERIOD: 2006-2013. MAJOR TAXA STUDIED: Perennial plants. METHODS: We characterized species-area relationships of plant communities by building accumulation curves describing the expected number of species as a function of the number of sampling units, and later compared the fit of three functions (power-law, logarithmic and Michaelis-Menten). We tested the prediction that the effects of aridity, soil pH on SAR are mediated by vegetation attributes such as evenness, cover, and spatial aggregation. RESULTS: We found that the logarithmic relationship was the most common functional form (c.50%), followed by Michaelis-Menten (c.33%) and power-law (c.17%). Functional form was mainly determined by evenness. Power-law relationships were found mostly under low evenness, logarithmic relationships peaked under intermediate evenness and the Michalis-Menten function increased in frequency with increasing evenness. The SAR parameters approximated by the logarithmic model ('small-scale richness' (b0 ) and 'accumulation coefficient' (b1 )) were determined by vegetation attributes. Increasing spatial aggregation had a negative effect on the small-scale richness and a positive effect on the accumulation coefficient, while evenness had an opposite effect. In addition, accumulation coefficient was positively affected by cover. Interestingly, aridity decreased small scale richness but did not affect the accumulation coefficient. MAIN CONCLUSIONS: Our findings highlight the role of evenness, spatial aggregation and cover as main drivers of species area relationships in drylands, the Earth's largest biome.

8.
Ecol Lett ; 22(1): 181-189, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30467931

ABSTRACT

The enormous variation in seed mass along gradients of soil resources has fascinated plant ecologists for decades. However, so far, this research has focused on the description of such variation, rather than its underlying mechanisms. Here we experimentally test a recent model relating such variation to two fundamental properties of plant growth: allometry of biomass growth and size-asymmetry of light competition. According to the model, mean seed mass should increase, and the variance of seed mass should show a unimodal response, to increasing soil resource availability (productivity). We test these predictions and their underlying assumptions using a combination of field observations, mesocosm experiments and greenhouse experiments focusing on Mediterranean annual plants. Our results support the predictions and assumptions of the model, and allow us to reject alternative models of seed mass variation. We conclude that growth-allometry and size-asymmetric light competition are key drivers of seed-mass variation along soil resource gradients.


Subject(s)
Seeds , Soil , Biomass , Plants
9.
Ecology ; 99(10): 2196-2206, 2018 10.
Article in English | MEDLINE | ID: mdl-30007370

ABSTRACT

The large variation in seed mass among species inspired a vast array of theoretical and empirical research attempting to explain this variation. So far, seed mass variation was investigated by two classes of studies. One class focuses on species varying in seed mass within communities, while the second focuses on variation between communities, most often with respect to resource gradients. Here, we develop a model capable of simultaneously explaining variation in seed mass within and between communities. The model describes resource competition (for both soil and light resources) in annual communities and incorporates two fundamental aspects: light asymmetry (higher light acquisition per unit biomass for larger individuals) and growth allometry (negative dependency of relative growth rate on plant biomass). Results show that both factors are critical in determining patterns of seed mass variation. In general, growth allometry increases the reproductive success of small-seeded species while light asymmetry increases the reproductive success of large-seeded species. Increasing availability of soil resources increases light competition, thereby increasing the reproductive success of large-seeded species and ultimately the community (weighted) mean seed mass. An unexpected prediction of the model is that maximum variation in community seed mass (a measure of functional diversity) occurs under intermediate levels of soil resources. Extensions of the model incorporating size-dependent seed survival and disturbance also show patterns consistent with empirical observations. These overall results suggest that the mechanisms captured by the model are important in determining patterns of species and functional diversity.


Subject(s)
Plants , Seeds , Biomass , Reproduction , Soil
10.
Ecol Lett ; 20(1): 60-69, 2017 01.
Article in English | MEDLINE | ID: mdl-27933739

ABSTRACT

One of the most ubiquitous patterns in plant ecology is species loss following nutrient enrichment. A common explanation for this universal pattern is an increase in the size asymmetry of light partitioning (the degree to which large plants receive more light per unit biomass than smaller plants), which accelerates the rates of competitive exclusions. This 'light asymmetry hypothesis' has been confirmed by mathematical models, but has never been tested in natural communities due to the lack of appropriate methodology for measuring the size asymmetry of light partitioning in natural communities. Here, we use a novel approach for quantifying the asymmetry of light competition which is based on measurements of the vertical distribution of light below the canopy. Using our approach, we demonstrate that an increase in light asymmetry is the main mechanism behind the negative effect of nutrient enrichment on species richness. Our results provide a possible explanation for one of the main sources of contemporary species loss in terrestrial plant communities.


Subject(s)
Biodiversity , Grassland , Light , Plant Physiological Phenomena/radiation effects , Biomass
11.
PLoS One ; 11(8): e0160798, 2016.
Article in English | MEDLINE | ID: mdl-27536943

ABSTRACT

A fundamental notion in community ecology is that local species diversity reflects some balance between the contrasting forces of competitive exclusion and competitive release. Quantifying this balance is not trivial, and requires data on the magnitude of both processes in the same system, as well as appropriate methodology to integrate and interpret such data. Here we present a novel framework for empirical studies of the balance between competitive exclusion and competitive release and demonstrate its applicability using data from a Mediterranean annual grassland where grazing is a major mechanism of competitive release. Empirical data on the balance between competitive exclusion and competitive release are crucial for understanding observed patterns of variation in local species diversity and the proposed approach provides a simple framework for the collection, interpretation, and synthesis of such data.


Subject(s)
Biota , Grassland , Herbivory , Animals , Biodiversity , Biological Evolution , Competitive Behavior , Models, Biological , Poaceae/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...