Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Ann Biomed Eng ; 50(7): 860-870, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35441268

ABSTRACT

Bicycle helmets are designed to attenuate both the linear and rotational response of the head during an oblique impact. Here we sought to quantify how the effectiveness of one popular rotation-attenuating system (MIPS) varied across 3 test headform conditions (bare, covered in stockings, and hair), 3 oblique impact orientations, and 4 impact speeds. We conducted 72 freefall drop tests of a single helmet model with and without MIPS onto a 45° angled anvil and measured the peak linear (PLA) and angular acceleration (PAA) and computed the angular velocity change (PAV) and brain injury criterion (BrIC). Across all headform conditions, MIPS reduced PAA and PAV by 38.2 and 33.2% respectively during X-axis rotation, 47.4 and 38.1% respectively during Y-axis rotation, and 22.9 and 20.5% during a combined ZY-axis rotation. Across all impact orientations, PAA was reduced by 39% and PAV by 32.4% with the bare headform while adding stockings reduced PAA and PAV by 41.6 and 36% respectively and the hair condition reduced PAA and PAV by 30.2 and 24.4% respectively. In addition, our data reveal the importance of using consistent headform conditions when evaluating the effect of helmet systems designed to attenuate head rotations during oblique impacts.


Subject(s)
Craniocerebral Trauma , Head Protective Devices , Acceleration , Bicycling/injuries , Biomechanical Phenomena , Craniocerebral Trauma/prevention & control , Equipment Design , Humans
2.
J Biomech Eng ; 142(4)2020 04 01.
Article in English | MEDLINE | ID: mdl-31833545

ABSTRACT

Bicycle helmets attenuate head impacts using expanded polystyrene (EPS) foam liners. The EPS density plays a key role in determining the helmet and head response during an impact. Prior pilot work in our lab showed that EPS density varied by up to 18 kg/m3 within a single helmet, and thus the purpose of this study was to quantify the regional density variations within and between helmets and to establish how these variations influence helmet impact performance. We evaluated 10-12 samples of two traditional and two bicycle motocross (BMX) bicycle helmets with EPS liners. The bulk liner density and density of 16-19 cores extracted from specific locations on each sample were measured. Additional samples of two of these helmet models were then impacted at 3.0, 6.3, and 7.8 m/s to determine the relationship between local EPS density and helmet impact performance. We found that density varied significantly within each sample in all helmet models and also varied significantly between samples in three helmet models. The density variations were not symmetric across the midline in two of the four helmet models. The observed density variations influenced the helmets' impact performance. Our data suggest that variations in peak headform acceleration during impacts to the same location on different samples of the same helmet model can be partially explained by density differences between helmet samples. These density variations and resulting impact performance differences may play a role in a helmet's ability to mitigate head injury.


Subject(s)
Head Protective Devices , Acceleration , Bicycling , Craniocerebral Trauma , Equipment Design , Polystyrenes
3.
Ann Biomed Eng ; 48(1): 58-67, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31768795

ABSTRACT

Bicycle helmets are effective in reducing many head injuries, but their effectiveness could be improved if they provided protection over a larger range of impact locations. We sought to quantify the impact performance of 12 helmet models below, on and above the CPSC prescribed test line. All helmets were drop tested at an impact speed of 6.2 m/s. One helmet adequately attenuated impacts below the CPSC limit of 300 g for all impact locations tested below, on and above the test line. Five helmets met this limit for impacts on or above the test line as required in the CPSC standard, but failed to meet it below the test line (not required in the standard). The remaining six helmets failed to meet the criterion on and/or above the test line. Our findings indicate that consumers should not assume that all portions of a helmet provide adequate and equivalent protection. Our findings also suggest that the CPSC's current system of self-regulation and self-testing by manufacturers does not prevent substandard bicycle helmets from being sold. Public availability of manufacturers' impact test data, an independent testing panel, and/or a wider distribution of impact locations are needed to better protect bicyclists.


Subject(s)
Bicycling , Equipment Failure Analysis , Head Protective Devices , Sports Equipment , Consumer Product Safety , Equipment Design
4.
Ann Biomed Eng ; 45(8): 1974-1984, 2017 08.
Article in English | MEDLINE | ID: mdl-28462479

ABSTRACT

Helmet manufacturers recommend replacing a bicycle helmet after an impact or after anywhere from 2 to 10 years of use. The goal of this study was to quantify the effect of helmet age on peak headform acceleration during impact attenuation testing of field-used bicycle helmets. Helmets were acquired by donation from consumers and retail stores, and were included in the study if they were free of impact-related damage, had a legible manufacture date label, and were certified to at least one helmet standard. Helmets (n = 770) spanning 0-26 years old were drop tested to measure peak linear headform acceleration during impacts to the right and left front regions of the helmets at two impact speeds (3.0 and 6.2 m/s). General linear mixed models were used to assess the effect of age and three covariates (helmet style, size and certification impact speed) on peak acceleration. Overall, age was related to either no difference or a statistically significant but small increase (≤0.76 g/year of helmet age) in peak headform acceleration. Extrapolated across 20 years, age-related differences were less than both style- (traditional vs. BMX) and size-related differences. The age-related differences were also less than the variability observed between different helmets after accounting for style, size and certification effects. These findings mean that bicycle helmets (up to 26-year-old traditional helmets and 13-year-old BMX helmets) do not lose their ability to attenuate impacts with age; however, other helmet features that may change with age were not evaluated in this study.


Subject(s)
Acceleration , Bicycling , Head Protective Devices , Physical Stimulation/methods , Sports Equipment , Equipment Design , Equipment Failure Analysis , Female , Humans , Male , Reproducibility of Results , Sensitivity and Specificity , Time Factors
5.
Accid Anal Prev ; 92: 175-83, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27077273

ABSTRACT

Bicycle helmets reduce the frequency and severity of severe to fatal head and brain injuries in bicycle crashes. Our goal here was to measure the impact attenuation performance of common bicycle helmets over a range of impact speeds. We performed 127 drop tests using 13 different bicycle helmet models (6 traditional style helmets and 7 BMX-style helmets) at impact speeds ranging from 1 to 10m/s onto a flat anvil. Helmets were struck on their left front and/or right front areas, a common impact location that was at or just below the test line of most bicycle helmet standards. All but one of the 10 certified helmet models remained below the 300g level at an impact speed of 6m/s, whereas none of the 3 uncertified helmets met this criterion. We found that the helmets with expanded polystyrene liners performed similarly and universally well. The single certified helmet with a polyurethane liner performed below the level expected by the Consumer Product Safety Commission (CPSC) standard at our impact location and the helmet structure failed during one of two supplemental tests of this helmet above the test line. Overall, we found that increased liner thickness generally reduced peak headform acceleration, particularly at higher impact speeds.


Subject(s)
Bicycling/injuries , Brain Injuries/prevention & control , Consumer Product Safety , Head Protective Devices/standards , Acceleration , Equipment Design , Humans
6.
J Biomech Eng ; 138(4): 041005, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26902784

ABSTRACT

Bicycle helmet foam liners absorb energy during impacts. Our goal was to determine if the impact attenuation properties of expanded polystyrene (EPS) foam used in bicycle helmets change with age. Foam cores were extracted from 63 used and unused bicycle helmets from ten different models spanning an age range of 2-20 yrs. All cores were impact tested at a bulk strain rate of 195 s(-1). Six dependent variables were determined from the stress-strain curve derived from each impact (yield strain, yield stress, elastic modulus, plateau slope, energy at 65% compression, and stress at 65% compression), and a general linear model was used to assess the effect of age on each dependent variable with density as a covariate. Age did not affect any of the dependent variables; however, greater foam density, which varied from 58 to 100 kg/m(3), generated significant increases in all of the dependent variables except for yield strain. Higher density foam cores also exhibited lower strains at which densification began to occur, tended to stay within the plateau region of the stress-strain curve, and were not compressed as much compared with the lower density cores. Based on these data, the impact attenuation properties of EPS foam in field-used bicycle helmets do not degrade with the age.


Subject(s)
Bicycling , Head Protective Devices , Materials Testing , Mechanical Phenomena , Polystyrenes , Compressive Strength , Time Factors
7.
Ann Biomed Eng ; 44(4): 1257-74, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26268586

ABSTRACT

Wearable sensors can measure head impact frequency and magnitude in football players. Our goal was to quantify the impact detection rate and validity of the direction and peak kinematics of two wearable sensors: a helmet system (HITS) and a mouthguard system (X2). Using a linear impactor, modified Hybrid-III headform and one helmet model, we conducted 16 impacts for each system at 12 helmet sites and 5 speeds (3.6-11.2 m/s) (N = 896 tests). Peak linear and angular accelerations (PLA, PAA), head injury criteria (HIC) and impact directions from each device were compared to reference sensors in the headform. Both sensors detected ~96% of impacts. Median angular errors for impact directions were 34° for HITS and 16° for X2. PLA, PAA and HIC were simultaneously valid at 2 sites for HITS (side, oblique) and one site for X2 (side). At least one kinematic parameter was valid at 2 and 7 other sites for HITS and X2 respectively. Median relative errors for PLA were 7% for HITS and -7% for X2. Although sensor validity may differ for other helmets and headforms, our analyses show that data generated by these two sensors need careful interpretation.


Subject(s)
Football/physiology , Head Movements/physiology , Head Protective Devices , Mouth Protectors , Telemetry/instrumentation , Acceleration , Biomechanical Phenomena , Craniocerebral Trauma , Football/injuries , Humans , Laboratories , Reproducibility of Results
8.
Ann Biomed Eng ; 42(9): 1834-45, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24920257

ABSTRACT

A headform is needed to validate and compare helmet- and mouthguard-based sensors that measure the severity and direction of football head impacts. Our goal was to quantify the dynamic response of a mandibular load-sensing headform (MLSH) and to compare its performance and repeatability to an unmodified Hybrid III headform. Linear impactors in two independent laboratories were used to strike each headform at six locations at 5.5 m/s and at two locations at 3.6 and 7.4 m/s. Impact severity was quantified using peak linear acceleration (PLA) and peak angular acceleration (PAA), and direction was quantified using the azimuth and elevation of the PLA. Repeatability was quantified using coefficients of variation (COV) and standard deviations (SD). Across all impacts, PLA was 1.6±1.8 g higher in the MLSH than in the Hybrid III (p=0.002), but there were no differences in PAA (p=0.25), azimuth (p=0.43) and elevation (p=0.11). Both headforms exhibited excellent or acceptable repeatability for PLA (HIII:COV=2.1±0.8%, MLSH:COV=2.0±1.2%, p=0.98), but site-specific repeatability ranging from excellent to poor for PAA (HIII:COV=7.2±4.0%, MLSH:COV=8.3±5.8%, p=0.58). Direction SD were generally <1° and did not vary between headforms. Overall, both headforms are similarly suitable for validating PLA in sensors that measure head impact severity in football players, however their utility for validating sensor PAA values varies with impact location.


Subject(s)
Football/physiology , Head Movements/physiology , Head Protective Devices , Models, Anatomic , Mouth Protectors , Sports Equipment , Acceleration , Biomechanical Phenomena , Head/physiology , Humans , Male
9.
Accid Anal Prev ; 42(6): 1778-84, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20728629

ABSTRACT

Helmets reduce the frequency and severity of head and brain injuries over a range of impact severities broader than those covered by the impact attenuation standards. Our goal was to document the impact attenuation performance of common helmet types over a wide range of impact speeds. Sixty-five drop tests were performed against the side of 10 different helmets onto a flat anvil at impact speeds of 0.9-10.1 m/s (energy=2-260J; equivalent drop heights of 0.04-5.2 m). Three non-approved beanie helmets performed poorly, with the worst helmet reaching a peak headform acceleration of 852g at 29J. Three full-face and one open-face helmet responded similarly from about 100g at 30J to between 292g and 344g at 256-260J. Three shorty style helmets responded like the full-face helmets up to 150J, above which varying degrees of foam densification appeared to occur. Impact restitution values varied from 0.19 to 0.46. A three-parameter model successfully captured the plateau and densification responses exhibited by the various helmets (R(2)=0.95-0.99). Helmet responses varied with foam thickness, foam material and possibly shell material, with the largest response differences consistent with either the presence/absence of a foam liner or the densification of the foam liner.


Subject(s)
Accidents, Traffic/prevention & control , Brain Injuries/prevention & control , Craniocerebral Trauma/prevention & control , Head Protective Devices/standards , Motorcycles , Acceleration/adverse effects , Biomechanical Phenomena , Consumer Product Safety/standards , Equipment Design , Humans , Safety/standards
10.
Med Eng Phys ; 28(5): 483-8, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16181797

ABSTRACT

The goal of this study was to compare the TekScan I-Scan Pressure Measurement System with two methods of analysis involving the Fuji Film Prescale Pressure Measuring System in estimating area, force and pressure. Fuji Film and TekScan sensors were alternately placed between a cylindrical peg and a finely ground steel base plate, and compressed with known forces. All Fuji stains were digitally scanned and analyzed. The Erase method of Fuji Film analysis consisted of manually removing portions of the image judged by the user to be outside the perimeter of the stain. The second method of Fuji Film analysis, termed the Threshold method, used the threshold tool to analyze only those pixels that were stained from loading. The TekScan system utilized special matrix-based sensors interfaced with a Windows compatible desktop computer that was equipped with specialized data acquisition hardware and analysis software. The data from this study did not support the hypothesis that all three methods would have accuracies within +/-5% of a known value, when estimating area, force and pressure. Specifically, the TekScan system was found to be more accurate than either of the Fuji Film methods when estimating area and pressure.


Subject(s)
Biomedical Engineering/instrumentation , Manometry/instrumentation , Membranes, Artificial , Biomedical Engineering/methods , Equipment Design , Equipment Failure Analysis , Manometry/methods , Pressure , Reproducibility of Results , Sensitivity and Specificity , Stress, Mechanical , Surface Properties
11.
Traffic Inj Prev ; 6(1): 38-43, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15823873

ABSTRACT

Both seat belt slack and anchor location are known to affect occupant excursion during high-speed frontal collisions, but their effects have not been studied at moderate collision severities. The goal of this study was to quantify how seat belt slack and anchor location affect occupant kinematics and kinetics in moderate severity frontal collisions. A Hybrid III 50th percentile male dummy was seated on a programmable sled and exposed to frontal collisions with a speed change of 17.5 km/h. The seat belt was adjusted either snugly or with 10 cm slack (distributed 60/40 between the shoulder and lap portions) and the anchor location was varied by adjusting the seat position either fully forward or rearward (seat travel = 13 cm). Accelerations and displacements of the head, T1 and pelvis were measured in the sagittal plane. Upper neck loads and knee displacements were also measured. Five trials were performed for each of the four combinations of belt adjustment (snug, slack) and anchor location (seat forward, seat rearward). For each trial, kinematic and kinetic response peaks were determined and then compared across conditions using ANOVAs. Peak displacements, accelerations and loads varied significantly with both seat belt slack and anchor location. Seat belt slack affected more parameters and had a larger effect than anchor location on most peak response parameters. Head displacements increased a similar amount between the snug/slack belt conditions and the rearward/forward anchor locations. Overall, horizontal head displacements increased from 23.8 cm in the snug-belt, rearward-anchor configuration to 33.9 cm in the slack-belt, forward-anchor configuration. These results demonstrated that analyses of occupant displacements, accelerations and loads during moderate frontal impacts should consider potential sources of seat belt slack and account for differences in seat belt anchor locations.


Subject(s)
Acceleration , Accidents, Traffic , Seat Belts , Biomechanical Phenomena , Humans , Manikins
12.
Accid Anal Prev ; 37(2): 275-85, 2005 Mar.
Article in English | MEDLINE | ID: mdl-15667814

ABSTRACT

Recent epidemiological and biomechanical studies have suggested that whiplash injury is related to a vehicle's average acceleration rather than its speed change during a rear-end collision. To further explore this phenomenon, the effect of various kinematic properties of the collision pulse on seven proposed whiplash injury criteria was quantified. A BioRID II rear-impact dummy was seated on a programmable sled and exposed six times to each of 15 different collision pulses. Five properties of the collision pulse were varied: peak acceleration (1.3-4.4 g), speed change (3-11 km/h), duration (52-180 ms), displacement (2-26 cm) and shape (square, sine and triangular). Linear and angular accelerations and displacements of the head, and linear accelerations of the T1 and pelvis were measured in the sagittal-plane. Upper neck loads in the sagittal-plane were also measured. Variations within the proposed injury criteria between the different pulses were compared using analyses of variance. Six criteria--peak upper neck shear force, peak upper neck moment, peak retraction, the neck injury criterion (NIC) and two normalized neck injury criteria (Nij and Nkm)--exhibited graded responses that were most sensitive to the average acceleration of the collision pulse. Peak extension angle between the head and T1 decreased with both increasing speed change and peak acceleration, and was, therefore, deemed unsuitable as a whiplash injury criterion for the BioRID dummy. Of the seven criteria, Nij and Nkm were best able to distinguish between the 15 pulses. If the six graded injury criteria are related to the risk of whiplash injury, then the results of this study indicate that the risk of whiplash injury can be reduced by bumper and seat designs that prolong the collision pulse and thereby reduce the average vehicle and occupant accelerations for a given speed change.


Subject(s)
Accidents, Traffic , Automobiles , Whiplash Injuries/prevention & control , Whiplash Injuries/physiopathology , Acceleration , Analysis of Variance , Biomechanical Phenomena , Equipment Design , Humans , Male , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...