Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 9(2): e88516, 2014.
Article in English | MEDLINE | ID: mdl-24520393

ABSTRACT

Our laboratory has previously demonstrated that peripheral inflammatory pain (PIP), induced by subcutaneous plantar injection of λ-carrageenan, results in increased expression and activity of the ATP-dependent efflux transporter P-glycoprotein (P-gp) that is endogenously expressed at the blood-brain barrier (BBB). The result of increased P-gp functional expression was a significant reduction in CNS uptake of morphine and, subsequently, reduced morphine analgesic efficacy. A major concern in the treatment of acute pain/inflammation is the potential for drug-drug interactions resulting from P-gp induction by therapeutic agents co-administered with opioids. Such effects on P-gp activity can profoundly modulate CNS distribution of opioid analgesics and alter analgesic efficacy. In this study, we examined the ability of diclofenac, a non-steroidal anti-inflammatory drug (NSAID) that is commonly administered in conjunction with the opioids during pain therapy, to alter BBB transport of morphine via P-gp and whether such changes in P-gp morphine transport could alter morphine analgesic efficacy. Administration of diclofenac reduced paw edema and thermal hyperalgesia in rats subjected to PIP, which is consistent with the known mechanism of action of this NSAID. Western blot analysis demonstrated an increase in P-gp expression in rat brain microvessels not only following PIP induction but also after diclofenac treatment alone. Additionally, in situ brain perfusion studies showed that both PIP and diclofenac treatment alone increased P-gp efflux activity resulting in decreased morphine brain uptake. Critically, morphine analgesia was significantly reduced in animals pretreated with diclofenac (3 h), as compared to animals administered diclofenac and morphine concurrently. These novel findings suggest that administration of diclofenac and P-gp substrate opioids during pain pharmacotherapy may result in a clinically significant drug-drug interaction.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Central Nervous System/metabolism , Diclofenac/pharmacology , Morphine/metabolism , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Biological Transport/drug effects , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Carrageenan , Central Nervous System/drug effects , Central Nervous System/pathology , Diclofenac/administration & dosage , Diclofenac/therapeutic use , Edema/blood , Edema/complications , Edema/drug therapy , Edema/pathology , Female , Fluorescent Antibody Technique , Hyperalgesia/blood , Hyperalgesia/complications , Hyperalgesia/drug therapy , Hyperalgesia/pathology , Microvessels/drug effects , Microvessels/metabolism , Microvessels/pathology , Nociception/drug effects , Pain/blood , Pain/complications , Pain/drug therapy , Pain/pathology , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/blood
2.
Am J Physiol Heart Circ Physiol ; 302(3): H582-93, 2012 Feb 01.
Article in English | MEDLINE | ID: mdl-22081706

ABSTRACT

Our laboratory has shown that λ-carrageenan-induced peripheral inflammatory pain (CIP) can alter tight junction (TJ) protein expression and/or assembly leading to changes in blood-brain barrier xenobiotic permeability. However, the role of reactive oxygen species (ROS) and subsequent oxidative stress during CIP is unknown. ROS (i.e., superoxide) are known to cause cellular damage in response to pain/inflammation. Therefore, we examined oxidative stress-associated effects at the blood-brain barrier (BBB) in CIP rats. During CIP, increased staining of nitrosylated proteins was detected in hind paw tissue and enhanced presence of protein adducts containing 3-nitrotyrosine occurred at two molecular weights (i.e., 85 and 44 kDa) in brain microvessels. Tempol, a pharmacological ROS scavenger, attenuated formation of 3-nitrotyrosine-containing proteins in both the hind paw and in brain microvessels when administered 10 min before footpad injection of λ-carrageenan. Similarly, CIP increased 4-hydroxynoneal staining in brain microvessels and this effect was reduced by tempol. Brain permeability to [(14)C]sucrose and [(3)H]codeine was increased, and oligomeric assemblies of occludin, a critical TJ protein, were altered after 3 h CIP. Tempol attenuated both [(14)C]sucrose and [(3)H]codeine brain uptake as well as protected occludin oligomers from disruption in CIP animals, suggesting that ROS production/oxidative stress is involved in modulating BBB functional integrity during pain/inflammation. Interestingly, tempol administration reduced codeine analgesia in CIP animals, indicating that oxidative stress during pain/inflammation may affect opioid delivery to the brain and subsequent efficacy. Taken together, our data show for the first time that ROS pharmacological scavenging is a viable approach for maintaining BBB integrity and controlling central nervous system drug delivery during acute inflammatory pain.


Subject(s)
Blood-Brain Barrier , Capillary Permeability/drug effects , Cyclic N-Oxides/pharmacology , Membrane Proteins/metabolism , Neuralgia , Xenobiotics/pharmacokinetics , Acute Disease , Aldehydes/pharmacokinetics , Analgesics, Opioid/pharmacokinetics , Animals , Antioxidants/pharmacology , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/immunology , Blood-Brain Barrier/metabolism , Capillary Permeability/immunology , Carbon Radioisotopes , Codeine/pharmacokinetics , Cysteine Proteinase Inhibitors/pharmacokinetics , Hyperalgesia/drug therapy , Hyperalgesia/immunology , Hyperalgesia/metabolism , Male , Membrane Proteins/immunology , Neuralgia/drug therapy , Neuralgia/immunology , Neuralgia/metabolism , Neuritis/drug therapy , Neuritis/immunology , Neuritis/metabolism , Occludin , Oxidative Stress/immunology , Rats , Rats, Sprague-Dawley , Spin Labels , Sucrose/pharmacokinetics , Tight Junctions/drug effects , Tight Junctions/immunology , Tight Junctions/metabolism , Tyrosine/analogs & derivatives , Tyrosine/metabolism
3.
J Pharmacol Exp Ther ; 336(3): 827-39, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21131267

ABSTRACT

Pain is a dominant symptom associated with inflammatory conditions. Pharmacotherapy with opioids may be limited by poor blood-brain barrier (BBB) permeability. One approach that may improve central nervous system (CNS) delivery is to target endogenous BBB transporters such as organic anion-transporting polypeptide 1a4 (Oatp1a4). It is critical to identify and characterize biological mechanisms that enable peripheral pain/inflammation to "transmit" upstream signals and alter CNS drug transport processes. Our goal was to investigate, in vivo, BBB functional expression of Oatp1a4 in animals subjected to peripheral inflammatory pain. Inflammatory pain was induced in female Sprague-Dawley rats (200-250 g) by subcutaneous injection of 3% λ-carrageenan into the right hind paw; control animals were injected with 0.9% saline. In rat brain microvessels, Oatp1a4 expression was increased during acute pain/inflammation. Uptake of taurocholate and [d-penicillamine(2,5)]-enkephalin, two established Oatp substrates, was increased in animals subjected to peripheral pain, suggesting increased Oatp1a4-mediated transport. Inhibition of inflammatory pain with the anti-inflammatory drug diclofenac attenuated these changes in Oatp1a4 functional expression, suggesting that inflammation in the periphery can modulate BBB transporters. In addition, diclofenac prevented changes in the peripheral signaling cytokine transforming growth factor-ß1 (TGF-ß1) levels and brain microvascular TGF-ß receptor expression induced by inflammatory pain. Pretreatment with the pharmacological TGF-ß receptor inhibitor 4-[4-(1,3-benzodioxol-5-yl)-5-(2-pyridinyl)-1H-imidazol-2-yl]benzamide (SB431542) increased Oatp1a4 functional expression in λ-carrageenan-treated animals and saline controls, suggesting that TGF-ß signaling is involved in Oatp1a4 regulation at the BBB. Our findings indicate that BBB transporters (i.e., Oatp1a4) can be targeted during drug development to improve CNS delivery of highly promising therapeutics.


Subject(s)
Blood-Brain Barrier/metabolism , Organic Anion Transporters/physiology , Pain/metabolism , Signal Transduction/physiology , Animals , Female , Gene Expression Regulation , Inflammation Mediators/metabolism , Inflammation Mediators/physiology , Organic Anion Transporters/biosynthesis , Random Allocation , Rats , Rats, Sprague-Dawley , Signal Transduction/genetics , Transforming Growth Factor beta1/metabolism
4.
J Cereb Blood Flow Metab ; 30(9): 1625-36, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20234382

ABSTRACT

The blood-brain barrier (BBB) has a critical role in central nervous system homeostasis. Intercellular tight junction (TJ) protein complexes of the brain microvasculature limit paracellular diffusion of substances from the blood into the brain. Hypoxia and reoxygenation (HR) is a central component to numerous disease states and pathologic conditions. We have previously shown that HR can influence the permeability of the BBB as well as the critical TJ protein occludin. During HR, free radicals are produced, which may lead to oxidative stress. Using the free radical scavenger tempol (200 mg/kg, intraperitoneal), we show that oxidative stress produced during HR (6% O(2) for 1 h, followed by room air for 20 min) mediates an increase in BBB permeability in vivo using in situ brain perfusion. We also show that these changes are associated with alterations in the structure and localization of occludin. Our data indicate that oxidative stress is associated with movement of occludin away from the TJ. Furthermore, subcellular fractionation of cerebral microvessels reveals alterations in occludin oligomeric assemblies in TJ associated with plasma membrane lipid rafts. Our data suggest that pharmacological inhibition of disease states with an HR component may help preserve BBB functional integrity.


Subject(s)
Blood-Brain Barrier/physiology , Hypoxia, Brain/metabolism , Membrane Proteins/metabolism , Oxidative Stress/physiology , Animals , Blotting, Western , Capillaries/metabolism , Capillaries/physiology , Centrifugation, Density Gradient , Cerebrovascular Circulation/physiology , Cyclic N-Oxides/pharmacology , Electrophoresis, Polyacrylamide Gel , Female , Fluorescent Antibody Technique , Free Radical Scavengers/pharmacology , HSP70 Heat-Shock Proteins/biosynthesis , Hypoxia, Brain/pathology , Hypoxia-Inducible Factor 1, alpha Subunit/biosynthesis , Indicators and Reagents , Microscopy, Confocal , Occludin , Permeability , Rats , Rats, Sprague-Dawley , Spin Labels , Translocation, Genetic
5.
J Cereb Blood Flow Metab ; 29(6): 1084-98, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19319146

ABSTRACT

Our laboratory has shown that peripheral inflammatory pain induced by lambda-carrageenan (CIP) can increase blood-brain barrier (BBB) permeability and alter tight junction (TJ) protein expression leading to changes in BBB functional integrity. However, the intracellular signaling mechanisms involved in this pathophysiologic response have not been elucidated. Transforming growth factor (TGF)-beta signaling pathways are known to regulate vascular integrity and permeability. Therefore, we examined the function of TGF-beta signaling at the BBB in rats subjected to CIP. During CIP, serum TGF-beta1 and protein expression of the TGF-beta receptor activin receptor-like kinase-5 (ALK5) were reduced. Brain permeability to (14)C-sucrose was increased and expression of TJ proteins (i.e., claudin-5, occludin, zonula occluden (ZO-1)) were also altered after 3 h CIP. Pharmacological inhibition of ALK5 with the selective inhibitor SB431542 further enhanced brain uptake of (14)C-sucrose, increased TJ protein expression (i.e., claudin-3, claudin-5, occludin, ZO-1), and decreased nuclear expression of TGF-beta/ALK5 signaling molecules (i.e., Smad2, Smad3), which suggests a role for TGF-beta/ALK5 signaling in the regulation of BBB integrity. Interestingly, administration of exogenous TGF-beta1 before CIP activated the TGF-beta/ALK5 pathway and reduced BBB permeability to (14)C-sucrose. Taken together, our data show that TGF-beta/ALK5 signaling is, in part, involved in the regulation of BBB functional integrity.


Subject(s)
Blood-Brain Barrier/metabolism , Inflammation/complications , Pain/etiology , Pain/metabolism , Signal Transduction , Tight Junctions/metabolism , Transforming Growth Factor beta1/metabolism , Activin Receptors/metabolism , Animals , Brain/blood supply , Brain/drug effects , Brain/enzymology , Carrageenan/pharmacology , Edema/chemically induced , Edema/metabolism , Female , Hot Temperature , Humans , Inflammation/chemically induced , Inflammation/metabolism , Phosphorylation , Protein Serine-Threonine Kinases , Rats , Rats, Sprague-Dawley , Receptor, Transforming Growth Factor-beta Type I , Receptors, Transforming Growth Factor beta , Smad Proteins/metabolism , Substrate Specificity , Sucrose/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...