Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 16(10): e0258136, 2021.
Article in English | MEDLINE | ID: mdl-34624030

ABSTRACT

As global climate change progresses, wildlife management will benefit from knowledge of demographic responses to climatic variation, particularly for species already endangered by other stressors. In Canada, climate change is expected to increasingly impact populations of threatened woodland caribou (Rangifer tarandus caribou) and much focus has been placed on how a warming climate has potentially facilitated the northward expansion of apparent competitors and novel predators. Climate change, however, may also exert more direct effects on caribou populations that are not mediated by predation. These effects include meteorological changes that influence resource availability and energy expenditure. Research on other ungulates suggests that climatic variation may have minimal impact on low-density populations such as woodland caribou because per-capita resources may remain sufficient even in "bad" years. We evaluated this prediction using demographic data from 21 populations in western Canada that were monitored for various intervals between 1994 and 2015. We specifically assessed whether juvenile recruitment and adult female survival were correlated with annual variation in meteorological metrics and plant phenology. Against expectations, we found that both vital rates appeared to be influenced by annual climatic variation. Juvenile recruitment was primarily correlated with variation in phenological conditions in the year prior to birth. Adult female survival was more strongly correlated with meteorological conditions and declined during colder, more variable winters. These responses may be influenced by the life history of woodland caribou, which reside in low-productivity refugia where small climatic changes may result in changes to resources that are sufficient to elicit strong demographic effects. Across all models, explained variation in vital rates was low, suggesting that other factors had greater influence on caribou demography. Nonetheless, given the declining trajectories of many woodland caribou populations, our results highlight the increased relevance of recovery actions when adverse climatic conditions are likely to negatively affect caribou demography.


Subject(s)
Conservation of Natural Resources , Ecosystem , Mammals/physiology , Reindeer/physiology , Animals , Animals, Wild/physiology , Canada , Climate Change , Endangered Species , Meteorology , Models, Biological , Population Dynamics , Predatory Behavior , Seasons
2.
J Anim Ecol ; 87(1): 274-284, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28940254

ABSTRACT

Rapid landscape alteration associated with human activity is currently challenging the evolved dynamical stability of many predator-prey systems by forcing species to behaviourally respond to novel environmental stimuli. In many forested systems, linear features (LFs) such as roads, pipelines and resource exploration lines (i.e. seismic lines) are a ubiquitous form of landscape alteration that have been implicated in altering predator-prey dynamics. One hypothesized effect is that LFs facilitate predator movement into and within prey refugia, thereby increasing predator-prey spatial overlap. We evaluated this hypothesis in a large mammal system, focusing on the interactions between boreal woodland caribou (Rangifer tarandus caribou) and their two main predators, wolves (Canis lupus) and black bears (Ursus americanus), during the calving season of caribou. In this system, LFs extend into and occur within peatlands (i.e. bogs and nutrient-poor fens), a habitat type highly used by caribou due to its refugia effects. Using resource selection analyses, we found that LFs increased predator selection of peatlands. Female caribou appeared to respond by avoiding LFs and areas with high LF density. However, in our study area, most caribou cannot completely avoid exposure to LFs and variation in female response had demographic effects. In particular, increasing proportional use of LFs by females negatively impacted survival of their neonate calves. Collectively, these results demonstrate how LFs can reduce the efficacy of prey refugia. Mitigating such effects will require limiting or restoring LFs within prey refugia, although the effectiveness of mitigation efforts will depend upon spatial scale, which in turn will be influenced by the life-history traits of predator and prey.


Subject(s)
Ecosystem , Predatory Behavior , Reindeer/physiology , Ursidae/physiology , Wolves/physiology , Animals , Animals, Newborn/physiology , British Columbia , Environment , Female , Population Dynamics
3.
J Anim Ecol ; 85(5): 1411-21, 2016 09.
Article in English | MEDLINE | ID: mdl-27354185

ABSTRACT

Searching allows animals to find food, mates, shelter and other resources essential for survival and reproduction and is thus among the most important activities performed by animals. Theory predicts that animals will use random search strategies in highly variable and unpredictable environments. Two prominent models have been suggested for animals searching in sparse and heterogeneous environments: (i) the Lévy walk and (ii) the composite correlated random walk (CCRW) and its associated area-restricted search behaviour. Until recently, it was difficult to differentiate between the movement patterns of these two strategies. Using a new method that assesses whether movement patterns are consistent with these two strategies and two other common random search strategies, we investigated the movement behaviour of three species inhabiting sparse northern environments: woodland caribou (Rangifer tarandus caribou), barren-ground grizzly bear (Ursus arctos) and polar bear (Ursus maritimus). These three species vary widely in their diets and thus allow us to contrast the movement patterns of animals from different feeding guilds. Our results showed that although more traditional methods would have found evidence for the Lévy walk for some individuals, a comparison of the Lévy walk to CCRWs showed stronger support for the latter. While a CCRW was the best model for most individuals, there was a range of support for its absolute fit. A CCRW was sufficient to explain the movement of nearly half of herbivorous caribou and a quarter of omnivorous grizzly bears, but was insufficient to explain the movement of all carnivorous polar bears. Strong evidence for CCRW movement patterns suggests that many individuals may use a multiphasic movement strategy rather than one-behaviour strategies such as the Lévy walk. The fact that the best model was insufficient to describe the movement paths of many individuals suggests that some animals living in sparse environments may use strategies that are more complicated than those described by the standard random search models. Thus, our results indicate a need to develop movement models that incorporate factors such as the perceptual and cognitive capacities of animals.


Subject(s)
Deer/physiology , Feeding Behavior , Movement , Ursidae/physiology , Animals , Female , Models, Biological
4.
Am Nat ; 187(5): 678-87, 2016 May.
Article in English | MEDLINE | ID: mdl-27104999

ABSTRACT

Group living is a widespread behavior thought to be an evolutionary adaptation for reducing predation risk. Many group-living species, however, spend a portion of their life cycle as dispersed individuals, suggesting that the costs and benefits of these opposing behaviors vary temporally. Here, we evaluated mechanistic hypotheses for explaining individual dispersion as a tactic for reducing predation risk at reproduction (i.e., birthing) in an otherwise group-living animal. Using simulation analyses parameterized by empirical data, we assessed whether dispersion increases reproductive success by (i) increasing predator search time, (ii) reducing predator encounter rates because individuals are inconspicuous relative to groups, or (iii) eliminating the risk of multiple kills per encounter. Simulations indicate that dispersion becomes favorable only when detectability increases with group size and there is risk of multiple kills per encounter. This latter effect, however, is likely the primary mechanism driving females to disperse at reproduction because group detectability effects are presumably constant year-round. We suggest that the risk of multiple kills imposed by highly vulnerable offspring may be an important factor influencing dispersive behavior in many species, and conservation strategies for such species will require protecting sufficient space to allow dispersion to effectively reduce predation risk.


Subject(s)
Animal Distribution , Predatory Behavior , Reindeer , Wolves , Animals , Animals, Newborn , Computer Simulation , Female , Reproduction
5.
Ecol Evol ; 3(12): 4149-60, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24324866

ABSTRACT

Analyses of animal movement data have primarily focused on understanding patterns of space use and the behavioural processes driving them. Here, we analyzed animal movement data to infer components of individual fitness, specifically parturition and neonate survival. We predicted that parturition and neonate loss events could be identified by sudden and marked changes in female movement patterns. Using GPS radio-telemetry data from female woodland caribou (Rangifer tarandus caribou), we developed and tested two novel movement-based methods for inferring parturition and neonate survival. The first method estimated movement thresholds indicative of parturition and neonate loss from population-level data then applied these thresholds in a moving-window analysis on individual time-series data. The second method used an individual-based approach that discriminated among three a priori models representing the movement patterns of non-parturient females, females with surviving offspring, and females losing offspring. The models assumed that step lengths (the distance between successive GPS locations) were exponentially distributed and that abrupt changes in the scale parameter of the exponential distribution were indicative of parturition and offspring loss. Both methods predicted parturition with near certainty (>97% accuracy) and produced appropriate predictions of parturition dates. Prediction of neonate survival was affected by data quality for both methods; however, when using high quality data (i.e., with few missing GPS locations), the individual-based method performed better, predicting neonate survival status with an accuracy rate of 87%. Understanding ungulate population dynamics often requires estimates of parturition and neonate survival rates. With GPS radio-collars increasingly being used in research and management of ungulates, our movement-based methods represent a viable approach for estimating rates of both parameters.

SELECTION OF CITATIONS
SEARCH DETAIL
...