Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 12(9)2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37174322

ABSTRACT

As the Greek-style yogurt market continues to experience prosperous growth, finding the most appropriate destination for yogurt acid whey (YAW) is still a challenge for Greek yogurt manufacturers. This study provides a direct alternative treatment of YAW by leveraging the abilities of Mucor circinelloides and Mucor genevensis to raise the pH of YAW and to produce fungal biomass with a high lipid content. Aerobic cultivations of these species were conducted in YAW, both with and without the addition of lactase, at 30 °C, and 200 rpm agitation. The density, pH, biochemical oxygen demand (BOD), biomass production, lipid content, fatty acid profile, and sugar and lactic acid concentrations were regularly measured throughout the 14-day cultivations. The data showed that M. genevensis was superior at deacidifying YAW to a pH above 6.0-the legal limit for disposing of cultured dairy waste. On the other hand, M. circinelloides generated more fungal biomass, containing up to 30% w/w of lipid with high proportions of oleic acid and γ-linolenic acid. Additionally, the treatments with lactase addition showed a significant decrease in the BOD. In conclusion, our results present a viable treatment to increase the pH of YAW and decrease its BOD, meanwhile generating fungal oils that can be further transformed into biodiesel or processed into functional foods or dietary supplements.

2.
Foods ; 11(16)2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36010466

ABSTRACT

High-Pressure Processing's (HPP) non-thermal inactivation of cells has been largely incompatible with food products in which the activity of selected cultures is intended (e.g., bio-preservation). This work aims to overcome this limitation using a cocoa butter encapsulation system for freeze-dried cultures that can be integrated with HPP technology with minimal detrimental effects on cell viability or activity capabilities. Using commercially available freeze-dried protective cultures, the desiccated cells survived HPP (600 MPa, 5 °C, 3 min) and subsequently experienced a 0.66-log increase in cell counts during 2 h of incubation. When the same culture was rehydrated prior to HPP, it underwent a >6.07-log decrease. Phosphate-buffered saline or skim milk inoculated with cocoa butter-encapsulated culture up to 24 h before HPP displayed robust cell counts after HPP and subsequent plating (8.37−9.16 CFU/mL). In addition to assessing viability following HPP, the study sought to test the applicability in a product in which post-HPP fermentation is desired While HPP-treated encapsulated cultures initially exhibited significantly delayed fermentative processes compared to the positive controls, by 48 h following inoculation, the HPP samples' pH values bore no significant difference from those of the positive controls (encapsulated samples: pH 3.83 to 3.92; positive controls: pH 3.81 to 3.85). The HPP encapsulated cultures also maintained high cell counts throughout the fermentation (≥8.95 log CFU/mL).

3.
Foods ; 10(6)2021 May 27.
Article in English | MEDLINE | ID: mdl-34071759

ABSTRACT

Acid whey is a by-product generated in large quantities during dairy processing, and is characterized by its low pH and high chemical oxygen demand. Due to a lack of reliable disposal pathways, acid whey currently presents a major sustainability challenge to the dairy industry. The study presented in this paper proposes a solution to this issue by transforming yogurt acid whey (YAW) into potentially palatable and marketable beverages through yeast fermentation. In this study, five prototypes were developed and fermented by Kluyveromyces marxianus, Brettanomyces bruxellensis, Brettanomyces claussenii, Saccharomyces cerevisiae (strain: Hornindal kveik), and IOC Be Fruits (IOCBF) S. cerevisiae, respectively. Their fermentation profiles were characterized by changes in density, pH, cell count, and concentrations of ethanol and organic acids. The prototypes were also evaluated on 26 sensory attributes, which were generated through a training session with 14 participants. While S. cerevisiae (IOCBF) underwent the fastest fermentation (8 days) and B. claussenii the slowest (21 days), K. marxianus and S. cerevisiae (Hornindal kveik) showed similar fermentation rates, finishing on day 20. The change in pH of the fermentate was similar for all five strains (from around 4.45 to between 4.25 and 4.31). Cell counts remained stable throughout the fermentation for all five strains (at around 6 log colony-forming units (CFU)/mL) except in the case of S. cerevisiae (Hornindal kveik), which ultimately decreased by 1.63 log CFU/mL. B. bruxellensis was the only strain unable to utilize all of the sugars in the substrate, with residual galactose remaining after fermentation. While both S. cerevisiae (IOCBF)- and B. claussenii-fermented samples were characterized by a fruity apple aroma, the former also had an aroma characteristic of lactic acid, dairy products, bakeries and yeast. A chemical odor characteristic of petroleum, gasoline or solvents, was perceived in samples fermented by B. bruxellensis and K. marxianus. An aroma of poorly aged or rancid cheese or milk also resulted from B. bruxellensis fermentation. In terms of appearance and mouthfeel, the S. cerevisiae (IOCBF)-fermented sample was rated the cloudiest, with the heaviest body. This study provides a toolkit for product development in a potential dairy-based category of fermented alcoholic beverages, which can increase revenue for the dairy industry by upcycling the common waste product YAW.

4.
J Dairy Sci ; 104(3): 2758-2772, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33358807

ABSTRACT

Shelf-stable milk is consumed worldwide, and this market is expected to continue growing. One quality challenge for UHT milk is age gelation during shelf life, which is in part caused by bacterial heat-stable proteases (HSP) synthesized during the raw milk storage period before heat processing. Some Pseudomonas spp. are HSP producers, and their ability to grow well at refrigeration temperature make them important spoilage organisms for UHT processors to control. Previous studies have shown that lactose oxidase (LO), a natural and commercially available enzyme that produces hydrogen peroxide and lactobionic acid from lactose, can control bacterial growth in raw milk. In this research, we investigated the ability of LO to control HSP producer outgrowth, and thus delay age gelation in UHT milk. Six strains of Pseudomonas spp. were selected based on their ability to synthesize HSP and used as a cocktail to inoculate both raw and sterile (UHT) milk at a level of 1 × 105 cfu/mL. Groups were treated with and without LO, stored for 4 d at 6°C, and monitored for cell count and pH. Additionally, a sample from each was tested for HSP activity via particle size analysis (average effective diameter at 90° angle and 658 nm wavelength) and visual inspection on each day of the storage period. The HSP activity results were contrasted using Tukey's HSD test, which showed that in UHT milk, a LO treatment (0.12 g/L) effectively prevented gelation as compared with the control. In raw milk, however, a concentration of 0.24 g/L of LO was needed to obtain a similar effect. This test was scaled up to 19-L pilot plant batches of raw milk where they were challenged with Pseudomonas cocktail, treated with LO for 3 d, and then UHT processed. Resulting UHT milk bottles were monitored for gelation. Significant differences in particle size between the LO-treated samples and the control were observed as early as 1 mo after processing, and gelation was not detected in the LO-treated samples through 6 mo of storage. These results demonstrated that LO can be used to delay age gelation in UHT milk induced by HSP-producing Pseudomonas spp., representing an opportunity to improve quality and reduce postproduction losses in the shelf-stable milk market sector.


Subject(s)
Carbohydrate Dehydrogenases , Milk , Animals , Food Preservation , Hot Temperature , Pseudomonas
SELECTION OF CITATIONS
SEARCH DETAIL
...