Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Biomacromolecules ; 24(7): 3032-3042, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37294315

ABSTRACT

Whether and how intramolecular crosslinks in polymeric materials contribute to mechanical properties is debated in both experimental and theoretical arenas. The tethering threads of Octopus bimaculoides egg cases provide a rare window to investigate this question in a biomaterial. The only detectable component of the load-bearing fibers in octopus threads is a 135 kDa protein, octovafibrin, comprising 29 tandem repeats of epidermal growth factor (EGF) each of which contains 3 intramolecular disulfide linkages. The N- and C-terminal C-type lectins mediate linear end-to-end octovafibrin self-assembly. Mechanical testing of threads shows that the regularly spaced disulfide linkages result in improved stiffness, toughness, and energy dissipation. In response to applied loads, molecular dynamics and X-ray scattering show that EGF-like domains deform by recruiting two hidden length ß-sheet structures nested between the disulfides. The results of this study further the understanding of intramolecular crosslinking in polymers and provide a foundation for the mechanical contributions of EGF domains to the extracellular matrix.


Subject(s)
Epidermal Growth Factor , Octopodiformes , Animals , Epidermal Growth Factor/chemistry , Amino Acid Sequence , Extracellular Matrix/metabolism , Disulfides/chemistry
2.
Langmuir ; 35(48): 15985-15991, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31405280

ABSTRACT

The mussel byssus thread is an extremely tough core-shelled fiber that dissipates substantial amounts of energy during tensile loading. The mechanical performance of the shell is critically reliant on 3,4-dihydroxyphenylalanine's (Dopa) ability to form reversible iron-catecholate complexes at pH 8. However, the formation of these coordinate cross-links is undercut by Dopa's oxidation to Dopa-quinone, a spontaneous process at seawater conditions. The large mechanical mismatch between the cuticle and the core lends itself to further complications. Despite these challenges, the mussel byssus thread performs its tethering function over long periods of time. Here, we address these two major questions: (1) how does the mussel slow/prevent oxidation in the cuticle, and (2) how is the mechanical mismatch at the core/shell interface mitigated? By combining a number of microscopy and spectroscopy techniques we have discerned a previously undescribed layer. Our results indicate this interlayer is thiol rich and thus will be called the thiol-rich interlayer (TRL). We propose the TRL serves as a long-lasting redox reservoir as well as a mechanical barrier.

3.
Nat Commun ; 9(1): 3424, 2018 08 24.
Article in English | MEDLINE | ID: mdl-30143627

ABSTRACT

The mussel cuticle, a thin layer that shields byssal threads from environmental exposure, is a model among high-performance coatings for being both hard and hyper-extensible. However, despite avid interest in translating its features into an engineered material, the mechanisms underlying this performance are manifold and incompletely understood. To deepen our understanding of this biomaterial, we explore here the ultrastructural, scratch-resistant, and mechanical features at the submicrometer scale and relate our observations to individual cuticular components. These investigations show that cuticle nanomechanics are governed by granular microinclusions/nanoinclusions, which, contrary to previous interpretations, are three-fold softer than the surrounding matrix. This adaptation, which is found across several related mussel species, is linked to the level of hydration and presumed to maintain bulk performance during tidal exposures. Given the interest in implementing transfer of biological principles to modern materials, these findings may have noteworthy implications for the design of durable synthetic coatings.


Subject(s)
Bivalvia , Animals , Biocompatible Materials , Biomechanical Phenomena , Ecosystem
4.
Biol Bull ; 234(2): 116-129, 2018 04.
Article in English | MEDLINE | ID: mdl-29856671

ABSTRACT

Although pigments contribute to much of the brilliant purple and orange coloration of the aeolid nudibranch Flabellina iodinea, the optical appearance of the animal was found to be augmented by dynamically sparkling, brightly reflective material in cells located throughout its epidermis. Electron microscopy revealed that specialized cells most abundant near the epithelial basal lamina contain numerous multilayer stacks of crystals, each within a fragile membrane capsule. High-resolution light microscopy of tissue sections showed that these crystalline stacks intermittently reflect light, with a temporally dynamic, sparkling appearance, suggesting that they are free to move-a phenomenon also observed in the live, intact whole animal and in the purified crystal stacks as well. Thin-layer chromatography and ultraviolet spectrometry show that the crystals isolated from all epithelial tissues are identical in composition, with guanine being the major component and its derivative, hypoxanthine, a minor component, regardless of the tissue's pigmentary color. Electron diffraction of the crystals purified separately from the orange and purple tissues exhibits nearly identical lattice parameters that closely match those measured for guanine crystals, which are widely distributed in other biophotonic systems ranging from marine invertebrates to terrestrial vertebrates. Heterogeneity of the thickness and spacing of the crystals within their stacks accounts for their broadband silvery reflectance. The optical appearance of the epidermis of this nudibranch thus results from the interaction of incident light with mobile stacks of purine crystals, augmenting the effects of its pigmentary colors.


Subject(s)
Gastropoda/classification , Gastropoda/ultrastructure , Purines/chemistry , Animals , Crystallization , Epidermis/chemistry , Spectrum Analysis , Ultraviolet Rays
5.
J R Soc Interface ; 14(131)2017 06.
Article in English | MEDLINE | ID: mdl-28592662

ABSTRACT

The adaptive attachment of marine mussels to a wide range of substrates in a high-energy, saline environment has been explored for decades and is a significant driver of bioinspired wet adhesion research. Mussel attachment relies on a fibrous holdfast known as the byssus, which is made by a specialized appendage called the foot. Multiple adhesive and structural proteins are rapidly synthesized, secreted and moulded by the foot into holdfast threads. About 10 well-characterized proteins, namely the mussel foot proteins (Mfps), the preCols and the thread matrix proteins, are reported as representing the bulk of these structures. To explore how robust this proposition is, we sequenced the transcriptome of the glandular tissues that produce and secrete the various holdfast components using next-generation sequencing methods. Surprisingly, we found around 15 highly expressed genes that have not previously been characterized, but bear key similarities to the previously defined mussel foot proteins, suggesting additional contribution to byssal function. We verified the validity of these transcripts by polymerase chain reaction, cloning and Sanger sequencing as well as confirming their presence as proteins in the byssus. These newly identified proteins greatly expand the palette of mussel holdfast biochemistry and provide new targets for investigation into bioinspired wet adhesion.


Subject(s)
Bivalvia/metabolism , Gene Expression Regulation/physiology , Proteins/metabolism , Adhesiveness , Amino Acid Sequence , Animals , Gene Expression Profiling , Proteins/chemistry
6.
J R Soc Interface ; 12(113): 20150827, 2015 Dec 06.
Article in English | MEDLINE | ID: mdl-26631333

ABSTRACT

Marine mussels of the genus Mytilus live in the hostile intertidal zone, attached to rocks, bio-fouled surfaces and each other via collagen-rich threads ending in adhesive pads, the plaques. Plaques adhere in salty, alkaline seawater, withstanding waves and tidal currents. Each plaque requires a force of several newtons to detach. Although the molecular composition of the plaques has been well studied, a complete understanding of supra-molecular plaque architecture and its role in maintaining adhesive strength remains elusive. Here, electron microscopy and neutron scattering studies of plaques harvested from Mytilus californianus and Mytilus galloprovincialis reveal a complex network structure reminiscent of structural foams. Two characteristic length scales are observed characterizing a dense meshwork (approx. 100 nm) with large interpenetrating pores (approx. 1 µm). The network withstands chemical denaturation, indicating significant cross-linking. Plaques formed at lower temperatures have finer network struts, from which we hypothesize a kinetically controlled formation mechanism. When mussels are induced to create plaques, the resulting structure lacks a well-defined network architecture, showcasing the importance of processing over self-assembly. Together, these new data provide essential insight into plaque structure and formation and set the foundation to understand the role of plaque structure in stress distribution and toughening in natural and biomimetic materials.


Subject(s)
Animal Structures/ultrastructure , Mytilus/ultrastructure , Animal Structures/chemistry , Animals , Mytilus/chemistry
7.
J Biol Chem ; 290(24): 15238-49, 2015 Jun 12.
Article in English | MEDLINE | ID: mdl-25918159

ABSTRACT

The reversible assembly of reflectin proteins drives dynamic iridescence in cephalopods. Squid dynamically tune the intensity and colors of iridescence generated by constructive interference from intracellular Bragg reflectors in specialized skin cells called iridocytes. Analysis of the tissue specificity of reflectin subtypes reveals that tunability is correlated with the presence of one specific reflectin sequence. Differential phosphorylation and dephosphorylation of the reflectins in response to activation by acetylcholine, as well as differences in their tissue-specific and subcellular spatial distributions, further support the suggestion of different roles for the different reflectin subtypes.


Subject(s)
Proteins/chemistry , Amino Acid Sequence , Animals , Base Sequence , DNA , DNA Primers , Decapodiformes , Iris/cytology , Iris/metabolism , Molecular Sequence Data , Phosphorylation , Polymerase Chain Reaction , Protein Conformation , Proteins/metabolism , Sequence Homology, Amino Acid
8.
J R Soc Interface ; 11(95): 20140106, 2014 Jun 06.
Article in English | MEDLINE | ID: mdl-24694894

ABSTRACT

Loliginid squid dynamically tune the structural iridescence of cells in their skin for active camouflage and communication. Bragg reflectors in these cells consist of membrane-bound lamellae periodically alternating with low refractive index extracellular spaces; neuronal signalling induces condensation of the reflectin proteins that fill the lamellae, consequently triggering the expulsion of water. This causes an increase in refractive index within the lamellae, activating reflectance, with the change in lamellar thickness and spacing progressively shifting the wavelength of reflected light. We used micro-spectrophotometry to measure the functionally relevant refractive index of the high-index lamellae of the Bragg reflectors containing the condensed reflectins in chemically fixed dermal iridocytes of the squid, Doryteuthis opalescens. Our high-magnification imaging spectrometer allowed us to obtain normalized spectra of optically distinct sections of the individual, subcellular, multi-layer Bragg stacks. Replacement of the extracellular fluid with liquids of increasing refractive index allowed us to measure the reflectivity of the Bragg stacks as it decreased progressively to 0 when the refractive index of the extracellular medium exactly matched that of the reflectin-filled lamellae, thus allowing us to directly measure the refractive index of the reflectin-filled lamellae as ncondensed lamellae ≈ 1.44. The measured value of the physiologically relevant ncondensed lamellae from these bright iridocytes falls within the range of values that we recently determined by an independent optical method and is significantly lower than values previously reported for dehydrated and air-dried reflectin films. We propose that this directly measured value for the refractive index of the squid's Bragg lamellae containing the condensed reflectins is most appropriate for calculations of reflectivity in similar reflectin-based high-index layers in other molluscs.


Subject(s)
Decapodiformes/chemistry , Decapodiformes/cytology , Refractometry , Skin/chemistry , Skin/cytology , Animals , Skin Pigmentation/physiology
9.
J Exp Biol ; 216(Pt 19): 3733-41, 2013 Oct 01.
Article in English | MEDLINE | ID: mdl-24006348

ABSTRACT

Loliginid squid use tunable multilayer reflectors to modulate the optical properties of their skin for camouflage and communication. Contained inside specialized cells called iridocytes, these photonic structures have been a model for investigations into bio-inspired adaptive optics. Here, we describe two distinct sexually dimorphic tunable biophotonic features in the commercially important species Doryteuthis opalescens: bright stripes of rainbow iridescence on the mantle just beneath each fin attachment and a bright white stripe centered on the dorsal surface of the mantle between the fins. Both of these cellular features are unique to the female; positioned in the same location as the conspicuously bright white testis in the male, they are completely switchable, transitioning between transparency and high reflectivity. The sexual dimorphism, location and tunability of these features suggest that they may function in mating or reproduction. These features provide advantageous new models for investigation of adaptive biophotonics. The intensely reflective cells of the iridescent stripes provide a greater signal-to-noise ratio than the adaptive iridocytes studied thus far, while the cells constituting the white stripe are adaptive leucophores--unique biological tunable broadband scatterers containing Mie-scattering organelles activated by acetylcholine, and a unique complement of reflectin proteins.


Subject(s)
Decapodiformes/cytology , Decapodiformes/ultrastructure , Animals , Color , Decapodiformes/physiology , Female , Male , Sex Differentiation , Skin/cytology
10.
J R Soc Interface ; 10(85): 20130386, 2013 Aug 06.
Article in English | MEDLINE | ID: mdl-23740489

ABSTRACT

Cephalopods (e.g. octopus, squid and cuttlefish) dynamically tune the colour and brightness of their skin for camouflage and communication using specialized skin cells called iridocytes. We use high-resolution microspectrophotometry to investigate individual tunable Bragg structures (consisting of alternating reflectin protein-containing, high-refractive index lamellae and low-refractive index inter-lamellar spaces) in live and chemically fixed iridocytes of the California market squid, Doryteuthis opalescens. This subcellular, single-stack microspectrophotometry allows for spectral normalization, permitting use of a transfer-matrix model of Bragg reflectance to calculate all the parameters of the Bragg stack-the refractive indices, dimensions and numbers of the lamellae and inter-lamellar spaces. Results of the fitting analyses show that eight or nine pairs of low- and high-index layers typically contribute to the observed reflectivity in live cells, whereas six or seven pairs of low- and high-index layers typically contribute to the reflectivity in chemically fixed cells. The reflectin-containing, high-index lamellae of live cells have a refractive index proportional to the peak reflectivity, with an average of 1.405 ± 0.012 and a maximum around 1.44, while the reflectin-containing lamellae in fixed tissue have a refractive index of 1.413 ± 0.015 suggesting a slight increase of refractive index in the process of fixation. As expected, incremental changes in refractive index contribute to the greatest incremental changes in reflectivity for those Bragg stacks with the most layers. The excursions in dimensions required to tune the measured reflected wavelength from 675 (red) to 425 nm (blue) are a decrease from ca 150 to 80 nm for the high-index lamellae and from ca 120 to 50 nm for the low-index inter-lamellar spaces. Fixation-induced dimensional changes also are quantified, leading us to suggest that further microspectrophotometric analyses of this iridocyte system can be used as a model system to quantify the effects of various methods of tissue fixation. The microspectrophotometry technique described can be expected to provide deeper insights into the molecular and physical mechanisms governing other biophotonically active cells and structures.


Subject(s)
Decapodiformes/cytology , Decapodiformes/physiology , Refractometry , Skin Pigmentation/physiology , Skin/cytology , Skin/metabolism , Animals
11.
Proc Natl Acad Sci U S A ; 110(7): 2552-6, 2013 Feb 12.
Article in English | MEDLINE | ID: mdl-23359694

ABSTRACT

Squids have used their tunable iridescence for camouflage and communication for millions of years; materials scientists have more recently looked to them for inspiration to develop new "biologically inspired" adaptive optics. Iridocyte cells produce iridescence through constructive interference of light with intracellular Bragg reflectors. The cell's dynamic control over the apparent lattice constant and dielectric contrast of these multilayer stacks yields the corresponding optical control of brightness and color across the visible spectrum. Here, we resolve remaining uncertainties in iridocyte cell structure and determine how this unusual morphology enables the cell's tunable reflectance. We show that the plasma membrane periodically invaginates deep into the iridocyte to form a potential Bragg reflector consisting of an array of narrow, parallel channels that segregate the resulting high refractive index, cytoplasmic protein-containing lamellae from the low-index channels that are continuous with the extracellular space. In response to control by a neurotransmitter, the iridocytes reversibly imbibe or expel water commensurate with changes in reflection intensity and wavelength. These results allow us to propose a comprehensive mechanism of adaptive iridescence in these cells from stimulation to color production. Applications of these findings may contribute to the development of unique classes of tunable photonic materials.


Subject(s)
Adaptation, Physiological/physiology , Body Water/metabolism , Cell Membrane/ultrastructure , Color , Decapodiformes/cytology , Models, Biological , Skin/ultrastructure , Animals , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Optics and Photonics/methods
12.
Biomaterials ; 31(5): 793-801, 2010 Feb.
Article in English | MEDLINE | ID: mdl-19906421

ABSTRACT

Cephalopods are nicknamed the "masters of disguise" for their highly evolved camouflage mechanisms, including the hallmark ability to rapidly change the color and reflectance of their skin. Previously, reflectin proteins were identified as the major biomaterial component of iridosomes [1], specialized light-reflecting architectures that contribute intense structural color to squid skin, eyes, and organs [2-5]. Supramolecular assembly of reflectin has been recognized as a key property in the protein's function [6]. Here, we report the first cloning and expression of a specific reflectin protein found in the responsive iridophore cells of the squid Loligo pealeii, which are unique in their ability to switch on/off and change color. We demonstrate that these iridophores can be chemically tuned to reflect the entire visible spectrum. By examining recombinant reflectin, we show that this dynamic optical function is facilitated by the hierarchical assembly of nanoscale protein particles that elicit large volume changes upon condensation. These findings provide insight into the design and synthesis of biomaterials for complex, responsive function in optical applications.


Subject(s)
Color , Loligo/chemistry , Proteins/chemistry , Proteins/ultrastructure , Animals , Cloning, Molecular , Light , Loligo/genetics , Loligo/metabolism , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Refractometry , Scattering, Radiation
SELECTION OF CITATIONS
SEARCH DETAIL
...