Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
ACR Open Rheumatol ; 5(10): 536-546, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37710418

ABSTRACT

OBJECTIVE: To use cell-based gene signatures to identify patients with systemic lupus erythematous (SLE) in the phase II/III APRIL-SLE and phase IIb ADDRESS II trials most likely to respond to atacicept. METHODS: A published immune cell deconvolution algorithm based on Affymetrix gene array data was applied to whole blood gene expression from patients entering APRIL-SLE. Five distinct patient clusters were identified. Patient characteristics, biomarkers, and clinical response to atacicept were assessed per cluster. A modified immune cell deconvolution algorithm was developed based on RNA sequencing data and applied to ADDRESS II data to identify similar patient clusters and their responses. RESULTS: Patients in APRIL-SLE (N = 105) were segregated into the following five clusters (P1-5) characterized by dominant cell subset signatures: high neutrophils, T helper cells and natural killer (NK) cells (P1), high plasma cells and activated NK cells (P2), high B cells and neutrophils (P3), high B cells and low neutrophils (P4), or high activated dendritic cells, activated NK cells, and neutrophils (P5). Placebo- and atacicept-treated patients in clusters P2,4,5 had markedly higher British Isles Lupus Assessment Group (BILAG) A/B flare rates than those in clusters P1,3, with a greater treatment effect of atacicept on lowering flares in clusters P2,4,5. In ADDRESS II, placebo-treated patients from P2,4,5 were less likely to be SLE Responder Index (SRI)-4, SRI-6, and BILAG-Based Combined Lupus Assessment responders than those in P1,3; the response proportions again suggested lower placebo effect and a greater treatment differential for atacicept in P2,4,5. CONCLUSION: This exploratory analysis indicates larger differences between placebo- and atacicept-treated patients with SLE in a molecularly defined patient subset.

2.
Front Immunol ; 14: 1106537, 2023.
Article in English | MEDLINE | ID: mdl-36845162

ABSTRACT

Autoimmune diseases vary in the magnitude and diversity of autoantibody profiles, and these differences may be a consequence of different types of breaks in tolerance. Here, we compared the disparate autoimmune diseases autoimmune polyendocrinopathy-candidiasis-ecto-dermal dystrophy (APECED), systemic lupus erythematosus (SLE), and Sjogren's syndrome (SjS) to gain insight into the etiology of breaks in tolerance triggering autoimmunity. APECED was chosen as a prototypical monogenic disease with organ-specific pathology while SjS and SLE represent polygenic autoimmunity with focal or systemic disease. Using protein microarrays for autoantibody profiling, we found that APECED patients develop a focused but highly reactive set of shared mostly anti-cytokine antibodies, while SLE patients develop broad and less expanded autoantibody repertoires against mostly intracellular autoantigens. SjS patients had few autoantibody specificities with the highest shared reactivities observed against Ro-52 and La. RNA-seq B-cell receptor analysis revealed that APECED samples have fewer, but highly expanded, clonotypes compared with SLE samples containing a diverse, but less clonally expanded, B-cell receptor repertoire. Based on these data, we propose a model whereby the presence of autoreactive T-cells in APECED allows T-dependent B-cell responses against autoantigens, while SLE is driven by breaks in peripheral B-cell tolerance and extrafollicular B-cell activation. These results highlight differences in the autoimmunity observed in several monogenic and polygenic disorders and may be generalizable to other autoimmune diseases.


Subject(s)
Autoimmune Diseases , Lupus Erythematosus, Systemic , Polyendocrinopathies, Autoimmune , Sjogren's Syndrome , Humans , Autoantibodies , Autoimmune Diseases/genetics , Autoimmune Diseases/complications , Autoantigens , Receptors, Antigen, B-Cell
3.
Arthritis Res Ther ; 24(1): 77, 2022 03 28.
Article in English | MEDLINE | ID: mdl-35346341

ABSTRACT

OBJECTIVE: There is an urgent need to identify novel biomarkers of LN to reflect renal histological changes. This study aims to investigate urinary G3BP levels in LN patients and their association with renal disease activity both clinically and pathologically. METHODS: This is a cross-sectional study. A total of 119 lupus nephritis patients were recruited. Thirty patients with chronic kidney diseases (CKD) and 27 healthy volunteers were also recruited as controls. Urinary G3BP was tested by ELISA. Renal histopathology was reviewed by an experienced renal pathologist. Other clinical variables were collected through chart review. RESULTS: The levels of uG3BP were significantly increased in active LN patients compared to those in inactive LN (p<0.001), CKD patients (p=0.01), and healthy controls (p<0.001). ROC analysis indicated a good discrimination ability of uG3BP to differentiate active LN from CKD patients (AUC=0.7), inactive LN (AUC=0.76), or healthy controls (AUC=0.87). uG3BP was positively correlated with SLEDAI (ρ=0.352, p<0.001), rSLEDAI (ρ=0.302, p<0.001), and SLICC RAS (ρ=0.465, p<0.001), indicating a role as a biomarker of disease activity. It also correlated with clinical parameters, including 24-h urine protein, ESR, and serum C3 levels. In patients with 24-h urine protein > 3.0 g/24h, uG3BP levels were higher in proliferative LN than in membranous LN (p=0.04). They could discriminate the two pathogenic types of LN (AUC=0.72), and they also positively correlated with AI (ρ=0.389, p=0.008) and scores of hyaline deposits (ρ=0.418, p=0.006). While in patients with 24-h urine protein ≤ 3.0 g/24h, uG3BP levels were not significantly different between proliferative and membranous LN, and there was no apparent relationship between uG3BP levels with AI or with scores of hyaline deposits, but they correlated positively with scores of cellular/fibrocellular crescents (ρ=0.328, p=0.04). CONCLUSION: uG3BP is a non-invasive biomarker for clinically and histologically reflecting disease activity. It is associated with active histological changes and can be used as a surrogate biomarker when the renal biopsy is impractical.


Subject(s)
Antigens, Neoplasm , Biomarkers, Tumor , Kidney , Lupus Nephritis , Antigens, Neoplasm/urine , Biomarkers/metabolism , Biomarkers, Tumor/urine , Cross-Sectional Studies , Galectin 3 , Humans , Kidney/pathology , Lupus Nephritis/pathology
4.
Sci Adv ; 6(20): eaay1057, 2020 05.
Article in English | MEDLINE | ID: mdl-32440537

ABSTRACT

The transcription factor interferon regulatory factor 5 (IRF5) plays essential roles in pathogen-induced immunity downstream of Toll-, nucleotide-binding oligomerization domain-, and retinoic acid-inducible gene I-like receptors and is an autoimmune susceptibility gene. Normally, inactive in the cytoplasm, upon stimulation, IRF5 undergoes posttranslational modification(s), homodimerization, and nuclear translocation, where dimers mediate proinflammatory gene transcription. Here, we report the rational design of cell-penetrating peptides (CPPs) that disrupt IRF5 homodimerization. Biochemical and imaging analysis shows that IRF5-CPPs are cell permeable, noncytotoxic, and directly bind to endogenous IRF5. IRF5-CPPs were selective and afforded cell type- and species-specific inhibition. In plasmacytoid dendritic cells, inhibition of IRF5-mediated interferon-α production corresponded to a dose-dependent reduction in nuclear phosphorylated IRF5 [p(Ser462)IRF5], with no effect on pIRF5 levels. These data support that IRF5-CPPs function downstream of phosphorylation. Together, data support the utility of IRF5-CPPs as novel tools to probe IRF5 activation and function in disease.


Subject(s)
Cell-Penetrating Peptides , Cell-Penetrating Peptides/genetics , Cell-Penetrating Peptides/metabolism , Cell-Penetrating Peptides/pharmacology , Dendritic Cells/metabolism , Gene Expression Regulation , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Phosphorylation
5.
Drug Discov Today ; 25(6): 1054-1064, 2020 06.
Article in English | MEDLINE | ID: mdl-32251777

ABSTRACT

Osteoarthritis (OA) is a common disease worldwide with large unmet medical needs. To bring innovative treatments to OA patients, we at Merck have implemented a comprehensive strategy for drug candidate evaluation. We have a clear framework for decision-making in our preclinical pipeline, to design our clinical proof-of-concept trials for OA patients. We have qualified our strategy to define and refine dose and dosing regimen, for treatments administered either systemically or intra-articularly (IA). We do this through preclinical in vitro and in vivo studies, and by back-translating results from clinical studies in OA patients.


Subject(s)
Drug Development/methods , Osteoarthritis, Knee/drug therapy , Pharmaceutical Preparations/administration & dosage , Pharmaceutical Preparations/chemistry , Animals , Humans , Injections, Intra-Articular/methods
6.
J Med Chem ; 59(24): 11039-11049, 2016 12 22.
Article in English | MEDLINE | ID: mdl-28002958

ABSTRACT

The discovery of novel 4-hydroxy-2-(heterocyclic)pyrimidine-5-carboxamide inhibitors of hypoxia-inducible factor (HIF) prolyl hydroxylases (PHD) is described. These are potent, selective, orally bioavailable across several species, and active in stimulating erythropoiesis. Mouse and rat studies showed hematological changes with elevations of plasma EPO and circulating reticulocytes following single oral dose administration, while 4-week q.d. po administration in rat elevated hemoglobin levels. A major focus of the optimization process was to decrease the long half-life observed in higher species with early compounds. These efforts led to the identification of 28 (MK-8617), which has advanced to human clinical trials for anemia.


Subject(s)
Anemia/drug therapy , Drug Discovery , Enzyme Inhibitors/pharmacology , Hypoxia-Inducible Factor-Proline Dioxygenases/antagonists & inhibitors , Pyridazines/pharmacology , Pyrimidines/pharmacology , Administration, Oral , Anemia/enzymology , Animals , Dose-Response Relationship, Drug , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , Humans , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Mice , Mice, Inbred C57BL , Models, Molecular , Molecular Structure , Pyridazines/administration & dosage , Pyridazines/chemistry , Pyrimidines/administration & dosage , Pyrimidines/chemistry , Rats , Rats, Sprague-Dawley , Structure-Activity Relationship
7.
Ann Rheum Dis ; 74(8): 1603-11, 2015 Aug.
Article in English | MEDLINE | ID: mdl-24764451

ABSTRACT

OBJECTIVES: Bruton's tyrosine kinase (Btk) is required for B lymphocyte and myeloid cell contributions to pathology in murine models of arthritis. Here, we examined the potential contributions of synovial Btk expression and activation to inflammation in rheumatoid arthritis (RA). MATERIALS AND METHODS: Btk was detected by immunohistochemistry and digital image analysis in synovial tissue from biologically naive RA (n=16) and psoriatic arthritis (PsA) (n=12) patients. Cell populations expressing Btk were identified by immunofluorescent double labelling confocal microscopy, quantitative (q-) PCR and immunoblotting. The effects of a Btk-specific inhibitor, RN486, on gene expression in human macrophages and RA synovial tissue explants (n=8) were assessed by qPCR, ELISA and single-plex assays. RESULTS: Btk was expressed at equivalent levels in RA and PsA synovial tissue, restricted to B lymphocytes, monocytes, macrophages and mast cells. RN486 significantly inhibited macrophage IL-6 production induced by Fc receptor and CD40 ligation. RN486 also reduced mRNA expression of overlapping gene sets induced by IgG, CD40 ligand (CD40L) and RA synovial fluid, and significantly suppressed macrophage production of CD40L-induced IL-8, TNF, MMP-1 and MMP-10, LPS-induced MMP-1, MMP-7 and MMP-10 production, and spontaneous production of IL-6, PDGF, CXCL-9 and MMP-1 by RA synovial explants. CONCLUSIONS: Btk is expressed equivalently in RA and PsA synovial tissue, primarily in macrophages. Btk activity is needed to drive macrophage activation in response to multiple agonists relevant to inflammatory arthritis, and promotes RA synovial tissue cytokine and MMP production. Pharmacological targeting of Btk may be of therapeutic benefit in the treatment of RA and other inflammatory diseases.


Subject(s)
Arthritis, Rheumatoid/metabolism , Isoquinolines/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Synovial Membrane/metabolism , Adult , Agammaglobulinaemia Tyrosine Kinase , Aged , Arthritis, Rheumatoid/genetics , B-Lymphocytes/metabolism , Female , Gene Expression , Humans , Immunohistochemistry , Interleukin-6/metabolism , Macrophages/drug effects , Male , Mast Cells/metabolism , Microscopy, Confocal , Middle Aged , Protein-Tyrosine Kinases/drug effects , Protein-Tyrosine Kinases/metabolism
8.
Arthritis Res Ther ; 15(5): R146, 2013 Oct 04.
Article in English | MEDLINE | ID: mdl-24286216

ABSTRACT

INTRODUCTION: Spleen tyrosine kinase (SYK) is a key integrator of intracellular signals triggered by activated immunoreceptors, including Bcell receptors (BCR) and Fc receptors, which are important for the development and function of lymphoid cells. Given the clinical efficacy of Bcell depletion in the treatment of rheumatoid arthritis and multiple sclerosis, pharmacological modulation of Bcells using orally active small molecules that selectively target SYK presents an attractive alternative therapeutic strategy. METHODS: A SYK inhibitor was developed and assayed in various in vitro systems and in the mouse model of collagen-induced arthritis (mCIA). RESULTS: A novel ATP-competitive inhibitor of SYK, 6-[(1R,2S)-2-Amino-cyclohexylamino]-4-(5,6-dimethyl-pyridin-2-ylamino)-pyridazine-3-carboxylic acid amide, designated RO9021, with an adequate kinase selectivity profile and oral bioavailability, was developed. In addition to suppression of BCR signaling in human peripheral blood mononuclear cells (PBMC) and whole blood, FcγR signaling in human monocytes, and FcϵR signaling in human mast cells, RO9021 blocked osteoclastogenesis from mouse bone marrow macrophages in vitro. Interestingly, Toll-like Receptor (TLR) 9 signaling in human Bcells was inhibited by RO9021, resulting in decreased levels of plasmablasts, immunoglobulin (Ig) M and IgG upon B-cell differentiation. RO9021 also potently inhibited type I interferon production by human plasmacytoid dendritic cells (pDC) upon TLR9 activation. This effect is specific to TLR9 as RO9021 did not inhibit TLR4- or JAK-STAT-mediated signaling. Finally, oral administration of RO9021 inhibited arthritis progression in the mCIA model, with observable pharmacokinetics (PK)-pharmacodynamic (PD) correlation. CONCLUSIONS: Inhibition of SYK kinase activity impinges on various innate and adaptive immune responses. RO9021 could serve as a starting point for the development of selective SYK inhibitors for the treatment of inflammation-related and autoimmune-related disorders.


Subject(s)
Adaptive Immunity/drug effects , Immunity, Innate/drug effects , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/antagonists & inhibitors , Small Molecule Libraries/pharmacology , Administration, Oral , Aminopyridines/chemistry , Aminopyridines/pharmacology , Animals , Arthritis, Experimental/metabolism , Arthritis, Experimental/prevention & control , Autoimmune Diseases/drug therapy , Autoimmune Diseases/metabolism , B-Lymphocytes/drug effects , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Line, Tumor , Cells, Cultured , Flow Cytometry , Humans , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/metabolism , Jurkat Cells , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Models, Molecular , Molecular Structure , Osteoclasts/cytology , Osteoclasts/drug effects , Osteoclasts/metabolism , Protein Binding , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Protein Structure, Tertiary , Protein-Tyrosine Kinases/chemistry , Protein-Tyrosine Kinases/metabolism , Pyridazines/chemistry , Pyridazines/pharmacology , Signal Transduction/drug effects , Small Molecule Libraries/administration & dosage , Small Molecule Libraries/chemistry , Syk Kinase
9.
Arthritis Rheum ; 65(9): 2380-91, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23754328

ABSTRACT

OBJECTIVE: Bruton's tyrosine kinase (BTK) plays a critical role in B cell development and function. We recently described a selective BTK inhibitor, RN486, that blocks B cell receptor (BCR) and Fcγ receptor signaling and is efficacious in animal models of arthritis. The aim of this study was to examine the potential efficacy of BTK in systemic lupus erythematosus (SLE), using an NZB × NZW mouse model of spontaneous SLE. METHODS: Mice received RN486 or its vehicle (administered in chow) at a final concentration of 30 mg/kg for 8 weeks, starting at 32 weeks of age. RESULTS: The administration of RN486 completely stopped disease progression, as determined by histologic and functional analyses of glomerular nephritis. The efficacy was associated with striking inhibition of B cell activation, as demonstrated by a significant reduction in CD69 expression in response to BCR crosslinking. RN486 markedly reduced the secretion of IgG anti-double-stranded DNA (anti-dsDNA) secretion, as determined by enzyme-linked immunosorbent and enzyme-linked immunospot assays. Flow cytometric analysis demonstrated depletion of CD138(high) B220(low) plasma cells in the spleen. RN486 inhibited secretion of IgG anti-dsDNA but not IgM anti-dsDNA, suggesting that pharmacologic blockade of BTK resembles the reported transgenic expression of low levels of endogenous BTK in B cells. In addition, RN486 may also impact the effector function of autoantibodies, as evidenced by a significant reduction in immune complex-mediated activation of human monocytes in vitro and down-regulation of the expression of macrophage-related and interferon-inducible genes in both the kidneys and spleens of treated mice. CONCLUSION: Collectively, our data suggest that BTK inhibitors may simultaneously target autoantibody-producing and effector cells in SLE, thus constituting a promising therapeutic alternative for this disease.


Subject(s)
B-Lymphocytes/pathology , Glomerulonephritis/drug therapy , Kidney Glomerulus/pathology , Lupus Erythematosus, Systemic/drug therapy , Protein-Tyrosine Kinases/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase , Animals , Antigen-Antibody Complex/metabolism , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , Disease Models, Animal , Disease Progression , Down-Regulation , Glomerulonephritis/metabolism , Glomerulonephritis/pathology , Kidney Glomerulus/drug effects , Kidney Glomerulus/metabolism , Lectins, C-Type/metabolism , Lupus Erythematosus, Systemic/metabolism , Lupus Erythematosus, Systemic/pathology , Lymphocyte Activation/drug effects , Mice , Mice, Inbred NZB , Receptors, IgG/metabolism
10.
Am J Pathol ; 183(2): 470-9, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23759512

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease of high unmet medical need. Although bromodomain (Brd) and extra terminal domain isoforms have recently been implicated in mediating inflammatory and oncologic indications, their roles in lung fibrosis have not been comprehensively assessed. We investigated the role of Brd on the profibrotic responses of lung fibroblasts (LFs) in patients with rapidly progressing IPF and a mouse bleomycin model of lung fibrosis. The enhanced migration, proliferation, and IL-6 release observed in LFs from patients with rapidly progressing IPF are attenuated by pharmacologic inhibition of Brd4. These changes are accompanied by enhanced histone H4 lysine5 acetylation and association of Brd4 with genes involved in the profibrotic responses in IPF LFs as demonstrated using chromatin immunoprecipitation and quantitative PCR. Oral administration of 200 mg/kg per day Brd4 inhibitor JQ1 in a therapeutic dosing regimen substantially attenuated lung fibrosis induced by bleomycin in C57BL/6 mice. In conclusion, this study shows that the Brd4 inhibitor JQ1, administered in a therapeutic dosage, is capable of inhibiting the profibrotic effects of IPF LFs and attenuates bleomycin-induced lung fibrosis in mice. These results suggest that Brd4 inhibitors may represent a novel therapy for the treatment of rapidly progressing IPF.


Subject(s)
Fibroblasts/pathology , Idiopathic Pulmonary Fibrosis/pathology , Nuclear Proteins/antagonists & inhibitors , Transcription Factors/antagonists & inhibitors , Acetylation , Animals , Anti-Inflammatory Agents/pharmacology , Antibiotics, Antineoplastic/toxicity , Azepines/pharmacology , Bleomycin/toxicity , Cell Cycle Proteins , Cell Movement/physiology , Cell Proliferation , Cells, Cultured , Connective Tissue Growth Factor/metabolism , Cytokines/metabolism , Disease Models, Animal , Fibroblasts/metabolism , Growth Substances/metabolism , Histones/metabolism , Humans , Idiopathic Pulmonary Fibrosis/chemically induced , Interleukin-6/genetics , Interleukin-6/metabolism , Male , Mice , Mice, Inbred C57BL , Skin/cytology , Triazoles/pharmacology
11.
J Biomol Screen ; 18(8): 890-8, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23704133

ABSTRACT

Spleen tyrosine kinase (SYK) and Bruton's tyrosine kinase (BTK) are key mediators in coupling cell surface receptors, such as the B-cell receptor (BCR), to downstream signaling events affecting diverse biological functions. There is therefore tremendous interest in the development of pharmacological inhibitors targeting the SYK-BTK axis for the treatment of inflammatory disorders and hematological malignancies. A good pharmacodynamic (PD) assay, ideally a blood-based assay that measures proximal events, is warranted for evaluation of such inhibitors. In platelets, collagen-induced activation of membrane glycoprotein GPVI is dependent on the SYK-BTK axis. Here, we report the development of a novel immunoassay that uses the dissociation-enhanced lanthanide fluorescent immunoassay (DELFIA) to measure GPVI-mediated phosphorylation of phospholipase C γ2 (PLCγ2), a direct substrate of SYK and BTK, in platelets. The assay was validated using SYK or BTK inhibitors and generated IC50 correlated with those from the BCR-induced B-cell activation assay. Furthermore, this assay showed good stability and uniformity over a period of 24 h in different donors. Interestingly, compound IC50 values using blood from patients with rheumatoid arthritis were slightly higher compared with those produced using samples from healthy donors. This novel platelet PLCγ2 phosphorylation-based immunoassay should serve as a promising PD assay for preclinical and clinical development of inhibitors targeting the SYK-BTK axis.


Subject(s)
Enzyme Assays/methods , Immunoassay/methods , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Phospholipase C gamma/metabolism , Protein-Tyrosine Kinases/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase , Antigens, CD/analysis , Antigens, Differentiation, T-Lymphocyte/analysis , Arthritis, Rheumatoid/blood , Arthritis, Rheumatoid/metabolism , Blood Platelets/cytology , Blood Platelets/metabolism , Hematologic Neoplasms/metabolism , Humans , Inflammation/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Lectins, C-Type/analysis , Phosphorylation , Protein-Tyrosine Kinases/metabolism , Signal Transduction , Syk Kinase
12.
Int Immunol ; 25(9): 497-506, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23667148

ABSTRACT

Organ transplant patients are often treated with immunosuppressants, such as the calcineurin phosphatase inhibitor, cyclosporin A, to block T cell-mediated graft rejection. The calcium release-activated calcium (CRAC/ORAI) channels, which act upstream of calcineurin, are essential for calcium entry and CD4(+) T-cell activation. Although cyclosporine A has also been shown to inhibit FoxP3(+) Tregs both in vitro and in vivo, the role of ORAI channel inhibition in natural Tregs (nTregs) or inducible Tregs (iTregs) has not been investigated. We found that, despite inhibition of calcium influx through the ORAI channels, ORAI channel inhibitors were unable to repress FoxP3 expression in mouse and human nTregs, whereas FoxP3 expression was inhibited in iTregs. In contrast, cyclosporin A inhibited FoxP3 expression in both nTregs and iTregs. We also generated mice with a T cell-specific, conditional knockout of ORAI1 and found that the mice have normal nTreg development and suppressive activity. Moreover, iTregs derived from ORAI1 conditional knockout mice develop normally and are still susceptible to ORAI channel inhibition. Our data indicate that unlike CD4(+) T cells and iTregs, nTregs are resistant to ORAI-mediated inhibition. Targeting ORAI channels potentially offers a novel way to inhibit pathologic T cells, while sparing nTreg-mediated tolerance.


Subject(s)
Calcium Channel Blockers/pharmacology , Calcium Channels/metabolism , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Animals , Cyclosporine/pharmacology , Dose-Response Relationship, Drug , Forkhead Transcription Factors/antagonists & inhibitors , Forkhead Transcription Factors/genetics , Humans , Mice , Structure-Activity Relationship , T-Lymphocytes, Regulatory/metabolism
13.
Pharmacol Ther ; 138(2): 294-309, 2013 May.
Article in English | MEDLINE | ID: mdl-23396081

ABSTRACT

Spleen Tyrosine Kinase (SYK) and Bruton's Tyrosine Kinase (BTK) are non-receptor cytoplasmic tyrosine kinases that are primarily expressed in cells of hematopoietic lineage. Both are key mediators in coupling activated immunoreceptors to downstream signaling events that affect diverse biological functions, from cellular proliferation, differentiation and adhesion to innate and adaptive immune responses. As such, pharmacological inhibitors of SYK or BTK are being actively pursued as potential immunomodulatory agents for the treatment of autoimmune and inflammatory disorders. Deregulation of SYK or BTK activity has also been implicated in certain hematological malignancies. To date, from a clinical perspective, pharmacological inhibition of SYK activity has demonstrated encouraging efficacy in patients with rheumatoid arthritis (RA), while patients with relapsed or refractory chronic lymphocytic leukemia (CLL)/small lymphocytic lymphoma (SLL) have benefited from covalent inhibitors of BTK in early clinical studies. Here, we review and discuss recent insights into the emerging role of the SYK-BTK axis in innate immune cell function as well as in the maintenance of survival and homing signals for tumor cell progression. The current progress on the clinical development of SYK and BTK inhibitors is also highlighted.


Subject(s)
Adjuvants, Immunologic/therapeutic use , Hematologic Diseases/drug therapy , Immune System Diseases/drug therapy , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Protein-Tyrosine Kinases/antagonists & inhibitors , Adaptive Immunity/drug effects , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/chemistry , Agammaglobulinaemia Tyrosine Kinase , Animals , Clinical Trials as Topic , Drug Evaluation, Preclinical , Hematologic Diseases/enzymology , Hematologic Diseases/immunology , Humans , Immune System Diseases/enzymology , Immune System Diseases/immunology , Immunity, Innate/drug effects , Molecular Structure , Molecular Targeted Therapy , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/chemistry , Syk Kinase
14.
Mol Immunol ; 54(3-4): 355-67, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23357789

ABSTRACT

Store operated calcium entry (SOCE) downstream of T cell receptor (TCR) activation in T lymphocytes has been shown to be mediated mainly through the Calcium Release Activated Calcium (CRAC) channel. Here, we compared the effects of a novel, potent and selective CRAC current inhibitor, 2,6-Difluoro-N-{5-[4-methyl-1-(5-methyl-thiazol-2-yl)-1,2,5,6-tetrahydro-pyridin-3-yl]-pyrazin-2-yl}-benzamide (RO2959), on T cell effector functions with that of a previously reported CRAC channel inhibitor, YM-58483, and a calcineurin inhibitor Cyclosporin A (CsA). Using both electrophysiological and calcium-based fluorescence measurements, we showed that RO2959 is a potent SOCE inhibitor that blocked an IP3-dependent current in CRAC-expressing RBL-2H3 cells and CHO cells stably expressing human Orai1 and Stim1, as well as SOCE in human primary CD4(+) T cells triggered by either TCR stimulation or thapsigargin treatment. Furthermore, we demonstrated that RO2959 completely inhibited cytokine production as well as T cell proliferation mediated by TCR stimulation or MLR (mixed lymphocyte reaction). Lastly, we showed by gene expression array analysis that RO2959 potently blocked TCR triggered gene expression and T cell functional pathways similar to CsA and another calcineurin inhibitor FK506. Thus, both from a functional and transcriptional level, our data provide evidence that RO2959 is a novel and selective CRAC current inhibitor that potently inhibits human T cell functions.


Subject(s)
CD4-Positive T-Lymphocytes/drug effects , Calcium Channel Blockers/pharmacology , Calcium Channels/metabolism , Anilides/pharmacology , Animals , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , CHO Cells , Calcineurin/metabolism , Calcineurin Inhibitors , Calcium/metabolism , Calcium Channels/genetics , Cell Line , Cell Proliferation/drug effects , Cricetinae , Cyclosporine/pharmacology , Cytokines/genetics , Cytokines/metabolism , Gene Expression/drug effects , Gene Expression/genetics , Humans , Lymphocyte Activation/drug effects , Lymphocyte Culture Test, Mixed/methods , Membrane Proteins/genetics , Membrane Proteins/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , ORAI1 Protein , Rats , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Stromal Interaction Molecule 1 , Tacrolimus/pharmacology , Thiadiazoles/pharmacology
15.
Immunol Lett ; 150(1-2): 97-104, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23266841

ABSTRACT

Platelet microparticles (pMPs) are small membrane-coated vesicles that are released from the plasma membrane upon platelet activation. In the joint fluid of patients with rheumatoid arthritis, pMP can interact with and activate fibroblast-like synoviocytes (FLS), which are important effector cells that mediate both immune activation and joint destruction. The signaling process by which engagement of glycoprotein VI (GPVI), a surface glycoprotein receptor for collagen which is expressed on platelets, triggers pMP generation is poorly understood, but has been suggested to involve Spleen Tyrosine Kinase (SYK), best known as an upstream activator of Bruton's Tyrosine Kinase (BTK) in B cells. In this study, we showed that activation of human platelets triggered by convulxin or collagen, specific ligands for GPVI receptor, or alternatively by antibody-mediated cross-linking of another platelet receptor, C type lectin-like receptor 2 (CLEC2), resulted in phosphorylation of BTK and downstream effector, phospholipase Cγ2 (PLCγ2). A potent and selective BTK inhibitor, RN486, inhibited GPVI- or CLEC2-mediated PLCγ2 phosphorylation and pMP production in a dose-dependent manner. BTK is also an essential effector of B cell receptor (BCR)-induced B cell signaling. Consistent with the biology, the IC50s of BTK inhibitors with varying potencies in a BCR-dependent B cell activation marker assay correlated with those in the GPVI-mediated PLCγ2 phosphorylation. In a co-culture system consisting of human primary synovial FLS and activated human platelets, convulxin stimulation resulted in elevated production of pro-inflammatory cytokines, IL-6 and IL-8, an effect which was dose-dependently blocked by RN486. The effects are specific as RN486 abrogated platelet aggregation induced by GPVI ligands but not by other platelet surface receptor agonists. Taken together, our data further support the potential therapeutic utility of BTK inhibitors in RA therapy, by inhibiting GPVI-mediated platelet activation and thus subsequent amplification of inflammation driven by pMP-induced FLS cytokines production.


Subject(s)
Blood Platelets/metabolism , Cell-Derived Microparticles/metabolism , Platelet Membrane Glycoproteins/metabolism , Protein-Tyrosine Kinases/metabolism , Synovitis/metabolism , Agammaglobulinaemia Tyrosine Kinase , Arthritis, Rheumatoid/metabolism , B-Lymphocytes/immunology , Catalysis , Coculture Techniques , Humans , Interleukin-6/biosynthesis , Interleukin-8/biosynthesis , Lectins, C-Type/metabolism , Lymphocyte Activation/immunology , Phospholipase C gamma/metabolism , Phosphorylation , Platelet Activation , Platelet Aggregation/drug effects , Platelet Membrane Glycoproteins/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Receptors, Antigen, B-Cell/metabolism
16.
Mol Pharmacol ; 83(1): 283-93, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23115324

ABSTRACT

Epigenetic alterations, such as histone acetylation, regulate the signaling outcomes and phenotypic responses of fibroblasts after growth factor stimulation. The bromodomain and extra-terminal domain-containing proteins (Brd) bind to acetylated histone residues, resulting in recruitment of components of the transcriptional machinery and subsequent gene transcription. Given the central importance of fibroblasts in tissue fibrosis, this study sought to determine the role of Brd proteins in human lung fibroblasts (LFs) after growth factor stimulation and in the murine bleomycin model of lung fibrosis. Using small interfering RNA against human Brd2 and Brd4 and pharmacologic Brd inhibitors, this study found that Brd2 and Brd4 are essential in mediating the phenotypic responses of LFs downstream of multiple growth factor pathways. Growth factor stimulation of LFs causes increased histone acetylation, association of Brd4 with growth factor-responsive genes, and enhanced transcription of these genes that could be attenuated with pharmacologic Brd inhibitors. Of note, lung fibrosis induced after intratracheal bleomycin challenge in mice could be prevented by pretreatment of animals with pharmacologic inhibitors of Brd proteins. This study is the first demonstration of a role for Brd2 and Brd4 proteins in mediating the responses of LFs after growth factor stimulation and in driving the induction of lung fibrosis in mice in response to bleomycin challenge.


Subject(s)
Fibroblasts/physiology , Lung/metabolism , Nuclear Proteins/metabolism , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-sis/pharmacology , Pulmonary Fibrosis/metabolism , Transcription Factors/metabolism , Transforming Growth Factor beta1/pharmacology , Actins/biosynthesis , Administration, Oral , Animals , Becaplermin , Bleomycin , Cell Cycle Proteins , Cell Movement , Cell Proliferation , Cytokines/metabolism , Epigenesis, Genetic , Extracellular Matrix Proteins/biosynthesis , Fibroblasts/drug effects , Humans , Lung/drug effects , Lung/pathology , Male , Mice , Mice, Inbred C57BL , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins c-sis/metabolism , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/prevention & control , RNA, Small Interfering/genetics , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Transcription, Genetic , Transforming Growth Factor beta1/metabolism
17.
Cell Immunol ; 278(1-2): 113-9, 2012.
Article in English | MEDLINE | ID: mdl-23121983

ABSTRACT

Cyclic diguanylate (c-di-GMP), a bacterial signaling molecule, possesses protective immunostimulatory activity in bacterial challenge models. This study explored the potential of c-di-GMP as a vaccine adjuvant comparing it with LPS, CpG oligonucleotides, and a conventional aluminum salt based adjuvant. In this evaluation, c-di-GMP was a more potent activator of both humoral and Th1-like immune responses as evidenced by the robust IgG2a antibody response it induced in mice and the strong IFN-γ, TNF-α and IP-10 responses, it elicited in mice and in vitro in non-human primate peripheral blood mononuclear cells. Further, compared to LPS or CpG, c-di-GMP demonstrated a more pronounced ability to induce germinal center formation, a hallmark of long-term memory, in immunized mice. Together, these data add to the growing body of evidence supporting the utility of c-di-GMP as an adjuvant in vaccination for sustained and robust immune responses and provide a rationale for further evaluation in appropriate models of immunization.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Antibodies, Bacterial/biosynthesis , Cyclic GMP/analogs & derivatives , Immunoglobulin G/biosynthesis , Alum Compounds/administration & dosage , Animals , Antibodies, Bacterial/immunology , Cyclic GMP/administration & dosage , Cyclic GMP/immunology , Female , Germinal Center/immunology , Hepatitis B Surface Antigens/administration & dosage , Humans , Immunity, Cellular , Immunity, Humoral , Immunization , Immunoglobulin G/immunology , Immunologic Memory , Interferon-gamma/biosynthesis , Interferon-gamma/immunology , Interleukin-10/biosynthesis , Interleukin-10/immunology , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Lipopolysaccharides/administration & dosage , Lipopolysaccharides/immunology , Macaca mulatta , Mice , Oligodeoxyribonucleotides/administration & dosage , Oligodeoxyribonucleotides/immunology , Th1 Cells/drug effects , Th1 Cells/immunology , Th1 Cells/metabolism , Tumor Necrosis Factor-alpha/biosynthesis , Tumor Necrosis Factor-alpha/immunology
18.
Biomark Med ; 6(4): 541-51, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22917155

ABSTRACT

AIMS: To characterize monocyte response in a delayed-type hypersensitivity reaction to intradermal tetanus toxoid (TT) injection. MATERIALS & METHODS: Men with positive serum anti-tetanus titers were stratified by last TT vaccination. Subjects were administered three intradermal injections of TT and one saline control on the same side of the back. Skin biopsies were taken post-injection. After 2 weeks, the procedure was repeated on the contralateral side. RESULTS: Men who received TT booster vaccination 1 month before the study showed greater reproducibility and lower variability in monocyte responses than those who were not revaccinated. Monocyte concentration in subjects re-vaccinated within 1 month of study start appeared maximal at 48 h post-injection. CONCLUSION: This assay represents a novel approach that allows for quantification of dermal monocyte/macrophage influx. This clinical methodology has potential utility in the pharmacodynamic evaluation of therapies targeting inflammatory disorders, which involve monocyte tissue recruitment, like the delayed-type hypersensitivity response.


Subject(s)
Monocytes/cytology , Tetanus Toxoid/immunology , Adult , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Cell Movement , Humans , Hypersensitivity, Delayed/immunology , Hypersensitivity, Delayed/pathology , Injections, Intradermal , Male , Middle Aged , Monocytes/immunology , Reproducibility of Results , Skin/metabolism , Skin/pathology
19.
J Med Chem ; 55(7): 2945-59, 2012 Apr 12.
Article in English | MEDLINE | ID: mdl-22364528

ABSTRACT

The discovery of 1,3,8-triazaspiro[4.5]decane-2,4-diones (spirohydantoins) as a structural class of pan-inhibitors of the prolyl hydroxylase (PHD) family of enzymes for the treatment of anemia is described. The initial hit class, spirooxindoles, was identified through affinity selection mass spectrometry (AS-MS) and optimized for PHD2 inhibition and optimal PK/PD profile (short-acting PHDi inhibitors). 1,3,8-Triazaspiro[4.5]decane-2,4-diones (spirohydantoins) were optimized as an advanced lead class derived from the original spiroindole hit. A new set of general conditions for C-N coupling, developed using a high-throughput experimentation (HTE) technique, enabled a full SAR analysis of the spirohydantoins. This rapid and directed SAR exploration has resulted in the first reported examples of hydantoin derivatives with good PK in preclinical species. Potassium channel off-target activity (hERG) was successfully eliminated through the systematic introduction of acidic functionality to the molecular structure. Undesired upregulation of alanine aminotransferese (ALT) liver enzymes was mitigated and a robust on-/off-target margin was achieved. Spirohydantoins represent a class of highly efficacious, short-acting PHD1-3 inhibitors causing a robust erythropoietin (EPO) upregulation in vivo in multiple preclinical species. This profile deems spirohydantoins as attractive short-acting PHDi inhibitors with the potential for treatment of anemia.


Subject(s)
Anemia/drug therapy , Aza Compounds/chemical synthesis , Hydantoins/chemical synthesis , Hypoxia-Inducible Factor 1/metabolism , Procollagen-Proline Dioxygenase/antagonists & inhibitors , Spiro Compounds/chemical synthesis , Animals , Aza Compounds/pharmacokinetics , Aza Compounds/pharmacology , Dogs , ERG1 Potassium Channel , Erythropoietin/biosynthesis , Ether-A-Go-Go Potassium Channels/metabolism , High-Throughput Screening Assays , Humans , Hydantoins/pharmacokinetics , Hydantoins/pharmacology , Hypoxia-Inducible Factor-Proline Dioxygenases , Indoles/chemical synthesis , Indoles/pharmacokinetics , Indoles/pharmacology , Liver/drug effects , Liver/enzymology , Macaca mulatta , Mass Spectrometry , Mice , Mice, Inbred C57BL , Protein Binding , Rats , Spiro Compounds/pharmacokinetics , Spiro Compounds/pharmacology , Structure-Activity Relationship , Up-Regulation
20.
J Pharmacol Exp Ther ; 341(1): 90-103, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22228807

ABSTRACT

Genetic mutation and pharmacological inhibition of Bruton's tyrosine kinase (Btk) both have been shown to prevent the development of collagen-induced arthritis (CIA) in mice, providing a rationale for the development of Btk inhibitors for treating rheumatoid arthritis (RA). In the present study, we characterized a novel Btk inhibitor, 6-cyclopropyl-8-fluoro-2-(2-hydroxymethyl-3-{1-methyl-5-[5-(4-methyl-piperazin-1-yl)-pyridin-2-ylamino]-6-oxo-1,6-dihydro-pyridin-3-yl}-phenyl)-2H-isoquinolin-1-one (RN486), in vitro and in rodent models of immune hypersensitivity and arthritis. We demonstrated that RN486 not only potently and selectively inhibited the Btk enzyme, but also displayed functional activities in human cell-based assays in multiple cell types, blocking Fcε receptor cross-linking-induced degranulation in mast cells (IC(50) = 2.9 nM), Fcγ receptor engagement-mediated tumor necrosis factor α production in monocytes (IC(50) = 7.0 nM), and B cell antigen receptor-induced expression of an activation marker, CD69, in B cells in whole blood (IC(50) = 21.0 nM). RN486 displayed similar functional activities in rodent models, effectively preventing type I and type III hypersensitivity responses. More importantly, RN486 produced robust anti-inflammatory and bone-protective effects in mouse CIA and rat adjuvant-induced arthritis (AIA) models. In the AIA model, RN486 inhibited both joint and systemic inflammation either alone or in combination with methotrexate, reducing both paw swelling and inflammatory markers in the blood. Together, our findings not only demonstrate that Btk plays an essential and conserved role in regulating immunoreceptor-mediated immune responses in both humans and rodents, but also provide evidence and mechanistic insights to support the development of selective Btk inhibitors as small-molecule disease-modifying drugs for RA and potentially other autoimmune diseases.


Subject(s)
Arthritis, Experimental/drug therapy , Arthritis, Experimental/immunology , Hypersensitivity/immunology , Hypersensitivity/prevention & control , Protein Kinase Inhibitors/therapeutic use , Protein-Tyrosine Kinases/antagonists & inhibitors , Agammaglobulinaemia Tyrosine Kinase , Animals , Arthritis, Experimental/enzymology , Cells, Cultured , Female , Humans , Hypersensitivity/enzymology , Male , Mast Cells/drug effects , Mast Cells/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred DBA , Protein Kinase Inhibitors/pharmacology , Protein-Tyrosine Kinases/metabolism , Rats , Rats, Sprague-Dawley , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...