Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 121(1): 013202, 2018 Jul 06.
Article in English | MEDLINE | ID: mdl-30028161

ABSTRACT

We demonstrate the efficient transfer of molecules from a magneto-optical trap into a conservative magnetic quadrupole trap. Our scheme begins with a blue-detuned optical molasses to cool SrF molecules to ≈50 µK. Next, we optically pump the molecules into a strongly trapped sublevel. This two-step process reliably transfers ≈40% of the molecules initially trapped in the magneto-optical trap into a single quantum state in the magnetic trap. Once loaded, the molecule cloud is compressed by increasing the magnetic field gradient. We observe a magnetic trap lifetime of over 1 s. This opens a promising new path to study ultracold molecular collisions, and potentially to produce quantum-degenerate molecular gases via sympathetic cooling with co-trapped atoms.

2.
Rev Sci Instrum ; 87(5): 053119, 2016 05.
Article in English | MEDLINE | ID: mdl-27250404

ABSTRACT

We demonstrate a simple and easy method for producing low-reflectivity surfaces that are ultra-high vacuum compatible, may be baked to high temperatures, and are easily applied even on complex surface geometries. Black cupric oxide (CuO) surfaces are chemically grown in minutes on any copper surface, allowing for low-cost, rapid prototyping, and production. The reflective properties are measured to be comparable to commercially available products for creating optically black surfaces. We describe a vacuum apparatus which uses multiple blackened copper surfaces for sensitive, low-background detection of molecules using laser-induced fluorescence.

3.
Phys Rev Lett ; 116(6): 063004, 2016 Feb 12.
Article in English | MEDLINE | ID: mdl-26918987

ABSTRACT

We demonstrate a scheme for magneto-optically trapping strontium monofluoride (SrF) molecules at temperatures one order of magnitude lower and phase space densities 3 orders of magnitude higher than obtained previously with laser-cooled molecules. In our trap, optical dark states are destabilized by rapidly and synchronously reversing the trapping laser polarizations and the applied magnetic field gradient. The number of molecules and trap lifetime are also significantly improved from previous work by loading the trap with high laser power and then reducing the power for long-term trapping. With this procedure, temperatures as low as 400 µK are achieved.

4.
Phys Rev Lett ; 113(10): 103003, 2014 Sep 05.
Article in English | MEDLINE | ID: mdl-25238355

ABSTRACT

Recent measurements in paramagnetic molecules improved the limit on the electron electric dipole moment (EDM) by an order of magnitude. Time-reversal (T) and parity (P) symmetry violation in molecules may also come from their nuclei. We point out that nuclear T, P-odd effects are amplified in paramagnetic molecules containing deformed nuclei, where the primary effects arise from the T, P-odd nuclear magnetic quadrupole moment (MQM). We perform calculations of T, P-odd effects in the molecules TaN, ThO, ThF+, HfF+, YbF, HgF, and BaF induced by MQMs. We compare our results with those for the diamagnetic TlF molecule, where the T, P-odd effects are produced by the nuclear Schiff moment. We argue that measurements in molecules with MQMs may provide improved limits on the strength of T, P-odd nuclear forces, on the proton, neutron, and quark EDMs, on quark chromo-EDMs, and on the QCD θ term and CP-violating quark interactions.

5.
Nature ; 512(7514): 286-9, 2014 Aug 21.
Article in English | MEDLINE | ID: mdl-25143111

ABSTRACT

Laser cooling and trapping are central to modern atomic physics. The most used technique in cold-atom physics is the magneto-optical trap (MOT), which combines laser cooling with a restoring force from radiation pressure. For a variety of atomic species, MOTs can capture and cool large numbers of particles to ultracold temperatures (less than ∼1 millikelvin); this has enabled advances in areas that range from optical clocks to the study of ultracold collisions, while also serving as the ubiquitous starting point for further cooling into the regime of quantum degeneracy. Magneto-optical trapping of molecules could provide a similarly powerful starting point for the study and manipulation of ultracold molecular gases. The additional degrees of freedom associated with the vibration and rotation of molecules, particularly their permanent electric dipole moments, allow a broad array of applications not possible with ultracold atoms. Spurred by these ideas, a variety of methods has been developed to create ultracold molecules. Temperatures below 1 microkelvin have been demonstrated for diatomic molecules assembled from pre-cooled alkali atoms, but for the wider range of species amenable to direct cooling and trapping, only recently have temperatures below 100 millikelvin been achieved. The complex internal structure of molecules complicates magneto-optical trapping. However, ideas and methods necessary for creating a molecular MOT have been developed recently. Here we demonstrate three-dimensional magneto-optical trapping of a diatomic molecule, strontium monofluoride (SrF), at a temperature of approximately 2.5 millikelvin, the lowest yet achieved by direct cooling of a molecule. This method is a straightforward extension of atomic techniques and is expected to be viable for a significant number of diatomic species. With further development, we anticipate that this technique may be employed in any number of existing and proposed molecular experiments, in applications ranging from precision measurement to quantum simulation and quantum information to ultracold chemistry.

6.
Phys Rev Lett ; 112(16): 163002, 2014 Apr 25.
Article in English | MEDLINE | ID: mdl-24815646

ABSTRACT

Rotational levels of molecular free radicals can be tuned to degeneracy by using laboratory-scale magnetic fields. Because of their intrinsically narrow width, these level crossings of opposite-parity states have been proposed for use in the study of parity-violating interactions and other applications. We experimentally study a typical manifestation of this system using BaF138. Using a Stark-mixing method for detection, we demonstrate level-crossing signals with spectral width as small as 6 kHz. We use our data to verify the predicted line shapes, transition dipole moments, and Stark shifts and to precisely determine molecular magnetic g factors. Our results constitute an initial proof of concept for use of this system to study nuclear spin-dependent parity-violating effects.

7.
Science ; 343(6168): 269-72, 2014 Jan 17.
Article in English | MEDLINE | ID: mdl-24356114

ABSTRACT

The Standard Model of particle physics is known to be incomplete. Extensions to the Standard Model, such as weak-scale supersymmetry, posit the existence of new particles and interactions that are asymmetric under time reversal (T) and nearly always predict a small yet potentially measurable electron electric dipole moment (EDM), d(e), in the range of 10(-27) to 10(-30) e·cm. The EDM is an asymmetric charge distribution along the electron spin (S(→)) that is also asymmetric under T. Using the polar molecule thorium monoxide, we measured d(e) = (-2.1 ± 3.7stat ± 2.5syst) × 10(-29) e·cm. This corresponds to an upper limit of |d(e)| < 8.7 × 10(-29) e·cm with 90% confidence, an order of magnitude improvement in sensitivity relative to the previous best limit. Our result constrains T-violating physics at the TeV energy scale.

8.
Phys Rev Lett ; 108(10): 103002, 2012 Mar 09.
Article in English | MEDLINE | ID: mdl-22463406

ABSTRACT

We demonstrate deceleration of a beam of neutral strontium monofluoride molecules using radiative forces. Under certain conditions, the deceleration results in a substantial flux of detected molecules with velocities ≲50 m/s. Simulations and other data indicate that the detection of molecules below this velocity is greatly diminished by transverse divergence from the beam. The observed slowing, from ∼140 m/s, corresponds to scattering ≳10(4) photons. We also observe longitudinal velocity compression under different conditions. Combined with molecular laser cooling techniques, this lays the groundwork to create slow and cold molecular beams suitable for trap loading.

9.
Phys Chem Chem Phys ; 13(42): 18936-47, 2011 Nov 14.
Article in English | MEDLINE | ID: mdl-21706119

ABSTRACT

We demonstrate and characterize a cryogenic buffer gas-cooled molecular beam source capable of producing bright beams of free radicals and refractory species. Details of the beam properties (brightness, forward velocity distribution, transverse velocity spread, rotational and vibrational temperatures) are measured under varying conditions for the molecular species SrF. Under typical conditions we produce a beam of brightness 1.2 × 10(11) molecules/sr/pulse in the X(2)Σ(+)(v = 0, N(rot) = 0) state, with 140(m/s) forward velocity and a rotational temperature of ≈ 1 K. This source compares favorably to other methods for producing beams of free radicals and refractory species for many types of experiments. We provide details of construction that may be helpful for others attempting to use this method.

10.
Nature ; 467(7317): 820-3, 2010 Oct 14.
Article in English | MEDLINE | ID: mdl-20852614

ABSTRACT

It has been roughly three decades since laser cooling techniques produced ultracold atoms, leading to rapid advances in a wide array of fields. Laser cooling has not yet been extended to molecules because of their complex internal structure. However, this complexity makes molecules potentially useful for a wide range of applications. For example, heteronuclear molecules possess permanent electric dipole moments that lead to long-range, tunable, anisotropic dipole-dipole interactions. The combination of the dipole-dipole interaction and the precise control over molecular degrees of freedom possible at ultracold temperatures makes ultracold molecules attractive candidates for use in quantum simulations of condensed-matter systems and in quantum computation. Also, ultracold molecules could provide unique opportunities for studying chemical dynamics and for tests of fundamental symmetries. Here we experimentally demonstrate laser cooling of the polar molecule strontium monofluoride (SrF). Using an optical cycling scheme requiring only three lasers, we have observed both Sisyphus and Doppler cooling forces that reduce the transverse temperature of a SrF molecular beam substantially, to a few millikelvin or less. At present, the only technique for producing ultracold molecules is to bind together ultracold alkali atoms through Feshbach resonance or photoassociation. However, proposed applications for ultracold molecules require a variety of molecular energy-level structures (for example unpaired electronic spin, Omega doublets and so on). Our method provides an alternative route to ultracold molecules. In particular, it bridges the gap between ultracold (submillikelvin) temperatures and the ∼1-K temperatures attainable with directly cooled molecules (for example with cryogenic buffer-gas cooling or decelerated supersonic beams). Ultimately, our technique should allow the production of large samples of molecules at ultracold temperatures for species that are chemically distinct from bialkalis.

11.
Phys Rev Lett ; 104(20): 200802, 2010 May 21.
Article in English | MEDLINE | ID: mdl-20867019

ABSTRACT

We describe a novel approach to directly measure the energy of the narrow, low-lying isomeric state in 229Th. Since nuclear transitions are far less sensitive to environmental conditions than atomic transitions, we argue that the 229Th optical nuclear transition may be driven inside a host crystal with a high transition Q. This technique might also allow for the construction of a solid-state optical frequency reference that surpasses the short-term stability of current optical clocks, as well as improved limits on the variability of fundamental constants. Based on analysis of the crystal lattice environment, we argue that a precision (short-term stability) of 3×10(-17)<Δf/f<1×10(-15) after 1 s of photon collection may be achieved with a systematic-limited accuracy (long-term stability) of Δf/f∼2×10(-16). Improvement by 10(2)-10(3) of the constraints on the variability of several important fundamental constants also appears possible.

12.
Phys Rev Lett ; 103(22): 223001, 2009 Nov 27.
Article in English | MEDLINE | ID: mdl-20366090

ABSTRACT

We demonstrate a scheme for optical cycling in the polar, diatomic molecule strontium monofluoride (SrF) using the X2Sigma+ --> A2Pi(1/2) electronic transition. SrF's highly diagonal Franck-Condon factors suppress vibrational branching. We eliminate rotational branching by employing a quasicycling N = 1 --> N' = 0 type transition in conjunction with magnetic field remixing of dark Zeeman sublevels. We observe cycling fluorescence and deflection through radiative force of an SrF molecular beam using this scheme. With straightforward improvements our scheme promises to allow more than 10(5) photon scatters, possibly enabling the direct laser cooling of SrF.

13.
Phys Rev Lett ; 100(20): 203201, 2008 May 23.
Article in English | MEDLINE | ID: mdl-18518530

ABSTRACT

Ultracold RbCs molecules in high-lying vibrational levels of the a3Sigma+ ground electronic state are confined in an optical trap. Inelastic collision rates of these molecules with both Rb and Cs atoms are determined for individual vibrational levels, across an order of magnitude of binding energies. The long-range dispersion coefficients for the collision process are calculated and used in a model that accurately reproduce the observed scattering rates.

14.
Phys Rev Lett ; 100(4): 043202, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-18352268

ABSTRACT

We propose new experiments with high sensitivity to a possible variation of the electron-to-proton mass ratio mu identical with m(e)/m(p). We consider a nearly degenerate pair of molecular vibrational levels, each associated with a different electronic potential. With respect to a change in mu, the change in the splitting between such levels can be large both on an absolute scale and relative to the splitting. We demonstrate the existence of such pairs of states in Cs2, where the narrow spectral lines achievable with ultracold molecules make the system promising for future searches for small variations in mu.

15.
Phys Rev Lett ; 100(2): 023003, 2008 Jan 18.
Article in English | MEDLINE | ID: mdl-18232864

ABSTRACT

Nuclear spin-dependent parity violation arises from weak interactions between electrons and nucleons and from nuclear anapole moments. We outline a method to measure such effects, using a Stark-interference technique to determine the mixing between opposite-parity rotational/hyperfine levels of ground-state molecules. The technique is applicable to nuclei over a wide range of atomic number, in diatomic species that are theoretically tractable for interpretation. This should provide data on anapole moments of many nuclei and on previously unmeasured neutral weak couplings.

16.
J Magn Reson ; 188(1): 160-7, 2007 Sep.
Article in English | MEDLINE | ID: mdl-17686642

ABSTRACT

We have developed an easy to construct, non-resonant wideband NMR probe. The probe is of the saddle coil geometry and is designed such that the coil itself forms a transmission line. The probe thus requires no tuning or matching elements. We use the probe with a spectrometer whose duplexer circuitry employs a simple RF switch instead of the more common lambda/4 lines, so the entire probe and spectrometer perform in an essentially frequency-independent manner. Despite being designed with electro- and magnetostatic formulas, the probe performs well at frequencies up to 150 MHz and beyond. We expect that with additional design effort, the probe could be modified for use at significantly higher frequencies. Because our construction method relies on commercial circuit fabrication techniques, identical probes can be easily and accurately produced.


Subject(s)
Algorithms , Magnetic Resonance Spectroscopy/instrumentation , Magnetic Resonance Spectroscopy/methods , Radio Waves
17.
Phys Rev Lett ; 97(3): 033003, 2006 Jul 21.
Article in English | MEDLINE | ID: mdl-16907499

ABSTRACT

We investigate a hybrid quantum circuit where ensembles of cold polar molecules serve as long-lived quantum memories and optical interfaces for solid state quantum processors. The quantum memory realized by collective spin states (ensemble qubit) is coupled to a high-Q stripline cavity via microwave Raman processes. We show that, for convenient trap-surface distances of a few microm, strong coupling between the cavity and ensemble qubit can be achieved. We discuss basic quantum information protocols, including a swap from the cavity photon bus to the molecular quantum memory, and a deterministic two qubit gate. Finally, we investigate coherence properties of molecular ensemble quantum bits.

18.
Phys Rev Lett ; 95(17): 173201, 2005 Oct 21.
Article in English | MEDLINE | ID: mdl-16383827

ABSTRACT

We demonstrate and characterize a high-flux beam source for cold, slow atoms or molecules. The desired species is vaporized using laser ablation, then cooled by thermalization in a cryogenic cell of buffer gas. The beam is formed by particles exiting a hole in the buffer gas cell. We characterize the properties of the beam (flux, forward velocity, temperature) for both an atom (Na) and a molecule (PbO) under varying buffer gas density, and discuss conditions for optimizing these beam parameters. Our source compares favorably to existing techniques of beam formation, for a variety of applications.

19.
Phys Rev Lett ; 92(13): 133007, 2004 Apr 02.
Article in English | MEDLINE | ID: mdl-15089605

ABSTRACT

The metastable a(1)[(3)Sigma(+)] state of PbO has been suggested as a suitable system in which to search for the electric dipole moment of the electron. We report here the development of experimental techniques allowing high-sensitivity measurements of Zeeman and Stark effects in this system, similar to those required for such a search. We observe Zeeman quantum beats in fluorescence from a vapor cell of PbO, with shot-noise limited extraction of the quantum beat frequencies, high counting rates, and long coherence times. We argue that improvement in sensitivity to the electron electric dipole moment by at least 2 orders of magnitude appears possible using these techniques.

20.
Phys Rev Lett ; 89(13): 133001, 2002 Sep 23.
Article in English | MEDLINE | ID: mdl-12225020

ABSTRACT

The a(1) state of PbO can be used to measure the electric dipole moment of the electron d(e). We discuss a semiempirical model for this state, which yields an estimate of the effective electric field on the valence electrons in PbO. Our final result is a lower limit on the measurable energy shift, which is significantly larger than was anticipated earlier: 2/W(d)/d(e)>or=2.4x10(25) Hz[d(e) divided by e cm].

SELECTION OF CITATIONS
SEARCH DETAIL
...