Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Med ; 5: 18, 2007 Jul 12.
Article in English | MEDLINE | ID: mdl-17626629

ABSTRACT

BACKGROUND: Duchenne muscular dystrophy results from mutation of the dystrophin gene, causing skeletal and cardiac muscle loss of function. The mdx mouse model of Duchenne muscular dystrophy is widely utilized to evaluate the potential of therapeutic regimens to modulate the loss of skeletal muscle function associated with dystrophin mutation. Importantly, progressive loss of diaphragm function is the most consistent striated muscle effect observed in the mdx mouse model, which is the same as in patients suffering from Duchenne muscular dystrophy. METHODS: Using the mdx mouse model, we have evaluated the effect that corticotrophin releasing factor 2 receptor (CRF2R) agonist treatment has on diaphragm function, morphology and gene expression. RESULTS: We have observed that treatment with the potent CRF2R-selective agonist PG-873637 prevents the progressive loss of diaphragm specific force observed during aging of mdx mice. In addition, the combination of PG-873637 with glucocorticoids not only prevents the loss of diaphragm specific force over time, but also results in recovery of specific force. Pathological analysis of CRF2R agonist-treated diaphragm muscle demonstrates that treatment reduces fibrosis, immune cell infiltration, and muscle architectural disruption. Gene expression analysis of CRF2R-treated diaphragm muscle showed multiple gene expression changes including globally decreased immune cell-related gene expression, decreased extracellular matrix gene expression, increased metabolism-related gene expression, and, surprisingly, modulation of circadian rhythm gene expression. CONCLUSION: Together, these data demonstrate that CRF2R activation can prevent the progressive degeneration of diaphragm muscle associated with dystrophin gene mutation.


Subject(s)
Dystrophin/genetics , Gene Expression Regulation , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/pathology , Receptors, Corticotropin-Releasing Hormone/agonists , Animals , Disease Models, Animal , Disease Progression , Gene Expression Profiling , Male , Mice , Mice, Inbred mdx , Models, Biological , Muscles/metabolism , Mutation , Time Factors
2.
Cardiovasc Res ; 69(4): 925-35, 2006 Mar 01.
Article in English | MEDLINE | ID: mdl-16409996

ABSTRACT

OBJECTIVE: Studies have reported that administration of stromal cell-derived factor-1 (SDF-1), the ligand for the G-protein coupled receptor CXCR4, increased collateral blood flow in a mouse model of vascular insufficiency via recruitment of endothelial precursor cells (EPC). The present study investigated the contribution of mature endothelial cells in the actions of SDF-1. METHODS: The regulation of SDF-1 and CXCR4 was examined in the rat cornea cauterization (CC) and aortic ring (AR) model. The functional significance of the SDF-1/CXCR4 pathway was explored in cultured endothelial cells, the AR model, and on collateral blood flow in a rat model of vascular insufficiency. RESULTS: In the present study, the CXCR4 transcript was dramatically upregulated in the rat CC and AR explants, systems containing and lacking bone marrow-derived EPCs, respectively. Addition of AMD3100, a selective CXCR4 antagonist, had no effect on vessel growth in the AR alone, but completely inhibited SDF-1 mediated increases in vascular sprouting. In cultured endothelial cells, SDF-1 alone or in combination with vascular endothelial growth factor (VEGF) significantly enhanced cell survival and migration. Finally, systemic administration of SDF-1 in a rat model of arterial insufficiency enhanced collateral blood flow above vehicle control and equal to that of VEGF after 2 weeks of treatment. CONCLUSION: These studies support activation of the SDF-1/CXCR4 axis as a means to promote blood vessel growth and enhance collateral blood flow, at least in part, via direct effects on vascular endothelial cells.


Subject(s)
Chemokines, CXC/administration & dosage , Endothelium, Vascular/metabolism , Peripheral Vascular Diseases/drug therapy , Animals , Aorta , Biomarkers/analysis , Cell Movement/drug effects , Cell Survival/drug effects , Cells, Cultured , Chemokine CXCL12 , Chemokines, CXC/genetics , Chemokines, CXC/therapeutic use , Collateral Circulation , Cornea/blood supply , Dose-Response Relationship, Drug , Endothelium, Vascular/pathology , Hindlimb/blood supply , Immunohistochemistry/methods , In Vitro Techniques , Models, Animal , Neovascularization, Pathologic , Oligonucleotide Array Sequence Analysis , Peripheral Vascular Diseases/metabolism , Peripheral Vascular Diseases/pathology , RNA, Messenger/analysis , Rats , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Regional Blood Flow/drug effects
3.
J Mol Diagn ; 5(3): 176-83, 2003 Aug.
Article in English | MEDLINE | ID: mdl-12876208

ABSTRACT

Morphological analysis of cytologic samples obtained by fine-needle aspirate (FNA) or bronchoscopy is an important method for diagnosing bronchogenic carcinoma. However, this approach has only about 65 to 80% diagnostic sensitivity. Based on previous studies, the c-myc x E2F-1/p21WAF1/CIP1 (p21 hereafter) gene expression index is highly sensitive and specific for distinguishing normal from malignant bronchial epithelial tissues. In an effort to improve sensitivity of diagnosing lung cancer in cytologic specimens, we used Standardized Reverse Transcriptase Polymerase Chain Reaction (StaRT-PCR) to measure the c-myc x E2F-1/p21 index in cDNA samples from 14 normal lung samples (6 normal lung parenchyma and 8 normal bronchial epithelial cell [NBEC] biopsies), and 16 FNA biopsies from 14 suspected tumors. Based on cytomorphologic criteria, 11 of the 14 suspected tumors were diagnosed as bronchogenic carcinoma and three specimens were non-diagnostic. Subsequent biopsy samples confirmed that the three non-diagnostic samples were derived from lung carcinomas. The index value for each bronchogenic carcinoma was above a cut-off value of 7000 and the index value of all but one normal sample was below 7000. Thus the c-myc x E2F-1/p21 index may augment cytomorphologic diagnosis of bronchogenic carcinoma biopsy samples, particularly those considered non-diagnostic by cytomorphologic criteria.


Subject(s)
Biopsy, Needle , Cell Cycle Proteins , Cyclins/genetics , DNA-Binding Proteins , Genes, myc , Lung Neoplasms/diagnosis , Transcription Factors/genetics , Aged , Cyclin-Dependent Kinase Inhibitor p21 , E2F Transcription Factors , E2F1 Transcription Factor , Female , Gene Expression , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Middle Aged , Reverse Transcriptase Polymerase Chain Reaction , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...