Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Mol Cell ; 83(18): 3314-3332.e9, 2023 09 21.
Article in English | MEDLINE | ID: mdl-37625404

ABSTRACT

Hsp104 is an AAA+ protein disaggregase that solubilizes and reactivates proteins trapped in aggregated states. We have engineered potentiated Hsp104 variants to mitigate toxic misfolding of α-synuclein, TDP-43, and FUS implicated in fatal neurodegenerative disorders. Though potent disaggregases, these enhanced Hsp104 variants lack substrate specificity and can have unfavorable off-target effects. Here, to lessen off-target effects, we engineer substrate-specific Hsp104 variants. By altering Hsp104 pore loops that engage substrate, we disambiguate Hsp104 variants that selectively suppress α-synuclein toxicity but not TDP-43 or FUS toxicity. Remarkably, α-synuclein-specific Hsp104 variants emerge that mitigate α-synuclein toxicity via distinct ATPase-dependent mechanisms involving α-synuclein disaggregation or detoxification of soluble α-synuclein conformers. Importantly, both types of α-synuclein-specific Hsp104 variant reduce dopaminergic neurodegeneration in a C. elegans model of Parkinson's disease more effectively than non-specific variants. We suggest that increasing the substrate specificity of enhanced disaggregases could be applied broadly to tailor therapeutics for neurodegenerative disease.


Subject(s)
Neurodegenerative Diseases , Saccharomyces cerevisiae Proteins , Animals , Humans , alpha-Synuclein/genetics , Saccharomyces cerevisiae Proteins/metabolism , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism
2.
Nat Chem Biol ; 19(8): 1004-1012, 2023 08.
Article in English | MEDLINE | ID: mdl-37322153

ABSTRACT

5-methylcytosine (5mC) is the most important DNA modification in mammalian genomes. The ideal method for 5mC localization would be both nondestructive of DNA and direct, without requiring inference based on detection of unmodified cytosines. Here we present direct methylation sequencing (DM-Seq), a bisulfite-free method for profiling 5mC at single-base resolution using nanogram quantities of DNA. DM-Seq employs two key DNA-modifying enzymes: a neomorphic DNA methyltransferase and a DNA deaminase capable of precise discrimination between cytosine modification states. Coupling these activities with deaminase-resistant adapters enables accurate detection of only 5mC via a C-to-T transition in sequencing. By comparison, we uncover a PCR-related underdetection bias with the hybrid enzymatic-chemical TET-assisted pyridine borane sequencing approach. Importantly, we show that DM-Seq, unlike bisulfite sequencing, unmasks prognostically important CpGs in a clinical tumor sample by not confounding 5mC with 5-hydroxymethylcytosine. DM-Seq thus offers an all-enzymatic, nondestructive, faithful and direct method for the reading of 5mC alone.


Subject(s)
5-Methylcytosine , DNA Methylation , Animals , Cytosine , DNA/genetics , Sequence Analysis, DNA/methods , Mammals/genetics
3.
J Clin Invest ; 131(16)2021 08 16.
Article in English | MEDLINE | ID: mdl-34396987

ABSTRACT

Chimeric antigen receptor (CAR) T cells have induced remarkable antitumor responses in B cell malignancies. Some patients do not respond because of T cell deficiencies that hamper the expansion, persistence, and effector function of these cells. We used longitudinal immune profiling to identify phenotypic and pharmacodynamic changes in CD19-directed CAR T cells in patients with chronic lymphocytic leukemia (CLL). CAR expression maintenance was also investigated because this can affect response durability. CAR T cell failure was accompanied by preexisting T cell-intrinsic defects or dysfunction acquired after infusion. In a small subset of patients, CAR silencing was observed coincident with leukemia relapse. Using a small molecule inhibitor, we demonstrated that the bromodomain and extra-terminal (BET) family of chromatin adapters plays a role in downregulating CAR expression. BET protein blockade also ameliorated CAR T cell exhaustion as manifested by inhibitory receptor reduction, enhanced metabolic fitness, increased proliferative capacity, and enriched transcriptomic signatures of T cell reinvigoration. BET inhibition decreased levels of the TET2 methylcytosine dioxygenase, and forced expression of the TET2 catalytic domain eliminated the potency-enhancing effects of BET protein targeting in CAR T cells, providing a mechanism linking BET proteins and T cell dysfunction. Thus, modulating BET epigenetic readers may improve the efficacy of cell-based immunotherapies.


Subject(s)
Immunotherapy, Adoptive , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , Proteins/antagonists & inhibitors , Proteins/immunology , Receptors, Chimeric Antigen/immunology , T-Lymphocytes/immunology , Antigens, CD19/immunology , Azepines/pharmacology , Epigenesis, Genetic , Glycolysis/drug effects , Humans , Immune Tolerance , Immunologic Memory , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Oxidative Phosphorylation/drug effects , Receptors, Chimeric Antigen/genetics , T-Lymphocytes/drug effects , T-Lymphocytes/metabolism , Triazoles/pharmacology
4.
Nature ; 593(7859): 429-434, 2021 05.
Article in English | MEDLINE | ID: mdl-34012082

ABSTRACT

Gene-editing technologies, which include the CRISPR-Cas nucleases1-3 and CRISPR base editors4,5, have the potential to permanently modify disease-causing genes in patients6. The demonstration of durable editing in target organs of nonhuman primates is a key step before in vivo administration of gene editors to patients in clinical trials. Here we demonstrate that CRISPR base editors that are delivered in vivo using lipid nanoparticles can efficiently and precisely modify disease-related genes in living cynomolgus monkeys (Macaca fascicularis). We observed a near-complete knockdown of PCSK9 in the liver after a single infusion of lipid nanoparticles, with concomitant reductions in blood levels of PCSK9 and low-density lipoprotein cholesterol of approximately 90% and about 60%, respectively; all of these changes remained stable for at least 8 months after a single-dose treatment. In addition to supporting a 'once-and-done' approach to the reduction of low-density lipoprotein cholesterol and the treatment of atherosclerotic cardiovascular disease (the leading cause of death worldwide7), our results provide a proof-of-concept for how CRISPR base editors can be productively applied to make precise single-nucleotide changes in therapeutic target genes in the liver, and potentially in other organs.


Subject(s)
CRISPR-Cas Systems , Cholesterol, LDL/blood , Gene Editing , Models, Animal , Proprotein Convertase 9/genetics , Adenine/metabolism , Animals , Cells, Cultured , Female , Hepatocytes/metabolism , Humans , Liver/enzymology , Loss of Function Mutation , Macaca fascicularis/blood , Macaca fascicularis/genetics , Male , Mice , Mice, Inbred C57BL , Mutagenesis, Site-Directed , Proprotein Convertase 9/blood , Proprotein Convertase 9/metabolism , Time Factors
5.
J Mol Biol ; 433(8): 166877, 2021 04 16.
Article in English | MEDLINE | ID: mdl-33561435

ABSTRACT

In mammalian genomes, cytosine methylation occurs predominantly at CG (or CpG) dinucleotide contexts. As part of dynamic epigenetic regulation, 5-methylcytosine (mC) can be erased by active DNA demethylation, whereby ten-eleven translocation (TET) enzymes catalyze the stepwise oxidation of mC to 5-hydroxymethylcytosine (hmC), 5-formylcytosine (fC), and 5-carboxycytosine (caC), thymine DNA glycosylase (TDG) excises fC or caC, and base excision repair yields unmodified cytosine. In certain cell types, mC is also enriched at some non-CG (or CH) dinucleotides, however hmC is not. To provide biochemical context for the distribution of modified cytosines observed in biological systems, we systematically analyzed the activity of human TET2 and TDG for substrates in CG and CH contexts. We find that while TET2 oxidizes mC more efficiently in CG versus CH sites, this context preference can be diminished for hmC oxidation. Remarkably, TDG excision of fC and caC is only modestly dependent on CG context, contrasting its strong context dependence for thymine excision. We show that collaborative TET-TDG oxidation-excision activity is only marginally reduced for CA versus CG contexts. Our findings demonstrate that the TET-TDG-mediated demethylation pathway is not limited to CG sites and suggest a rationale for the depletion of hmCH in genomes rich in mCH.


Subject(s)
CpG Islands , DNA Demethylation , Thymine DNA Glycosylase/chemistry , Thymine DNA Glycosylase/metabolism , 5-Methylcytosine/analogs & derivatives , Cytosine/analogs & derivatives , DNA Repair , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Dioxygenases , Epigenesis, Genetic , Humans , Oxidation-Reduction , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/metabolism , Thymine DNA Glycosylase/genetics
6.
Mol Cell ; 81(4): 859-869.e8, 2021 02 18.
Article in English | MEDLINE | ID: mdl-33352108

ABSTRACT

Active DNA demethylation via ten-eleven translocation (TET) family enzymes is essential for epigenetic reprogramming in cell state transitions. TET enzymes catalyze up to three successive oxidations of 5-methylcytosine (5mC), generating 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), or 5-carboxycytosine (5caC). Although these bases are known to contribute to distinct demethylation pathways, the lack of tools to uncouple these sequential oxidative events has constrained our mechanistic understanding of the role of TETs in chromatin reprogramming. Here, we describe the first application of biochemically engineered TET mutants that unlink 5mC oxidation steps, examining their effects on somatic cell reprogramming. We show that only TET enzymes proficient for oxidation to 5fC/5caC can rescue the reprogramming potential of Tet2-deficient mouse embryonic fibroblasts. This effect correlated with rapid DNA demethylation at reprogramming enhancers and increased chromatin accessibility later in reprogramming. These experiments demonstrate that DNA demethylation through 5fC/5caC has roles distinct from 5hmC in somatic reprogramming to pluripotency.


Subject(s)
5-Methylcytosine/metabolism , Cellular Reprogramming , DNA-Binding Proteins/metabolism , Embryo, Mammalian/metabolism , Enhancer Elements, Genetic , Epigenesis, Genetic , Fibroblasts/metabolism , Proto-Oncogene Proteins/metabolism , Animals , DNA-Binding Proteins/genetics , Dioxygenases , Embryo, Mammalian/cytology , Fibroblasts/cytology , HEK293 Cells , Humans , Mice , Mice, Knockout , Mutation , NIH 3T3 Cells , Proto-Oncogene Proteins/genetics
7.
Sports Med Open ; 5(1): 37, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31414195

ABSTRACT

Competitive sports that involve extensive contact with mud are commonly held events and growing in popularity. However, the natural environment contributes to infection risks, and these events have been implicated in multiple infectious disease outbreaks. Soils and mud contain rich microbial communities and can include pathogens (including viruses, bacteria, and parasites), thereby offering risk of infection; there is also a risk of disease due to shedding, by participants, of pathogens directly into the environment. These disease risks are ubiquitous and are present in the most developed countries, as well as elsewhere. Prevention of the further spread of mud sport-related infections through secondary infections to non-participant community members is of critical importance. We recommend shifts in practice and policy, such as site condition monitoring, improved messaging with regards to infections risk, and implementation of pre- and post-event wash stations to reduce these risks.

8.
Biochemistry ; 58(5): 411-421, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30387995

ABSTRACT

Enzymes of the ten-eleven translocation (TET) family add diversity to the repertoire of nucleobase modifications by catalyzing the oxidation of 5-methylcytosine (5mC). TET enzymes were initially found to oxidize 5-methyl-2'-deoxycytidine in genomic DNA, yielding products that contribute to epigenetic regulation in mammalian cells, but have since been found to also oxidize 5-methylcytidine in RNA. Considering the different configurations of single-stranded (ss) and double-stranded (ds) DNA and RNA that coexist in a cell, defining the scope of TET's preferred activity and the mechanisms of substrate selectivity is critical to better understand the enzymes' biological functions. To this end, we have systematically examined the activity of human TET2 on DNA, RNA, and hybrid substrates in vitro. We found that, while ssDNA and ssRNA are well tolerated, TET2 is most proficient at dsDNA oxidation and discriminates strongly against dsRNA. Chimeric and hybrid substrates containing mixed DNA and RNA character helped reveal two main features by which the enzyme discriminates between substrates. First, the identity of the target nucleotide alone is the strongest reactivity determinant, with a preference for 5-methyldeoxycytidine, while both DNA or RNA are relatively tolerated on the rest of the target strand. Second, while a complementary strand is not required for activity, DNA is the preferred partner, and complementary RNA diminishes reactivity. Our biochemical analysis, complemented by molecular dynamics simulations, provides support for an active site optimally configured for dsDNA reactivity but permissive for various nucleic acid configurations, suggesting a broad range of plausible roles for TET-mediated 5mC oxidation in cells.


Subject(s)
5-Methylcytosine/chemistry , DNA-Binding Proteins/metabolism , DNA/chemistry , DNA/metabolism , Proto-Oncogene Proteins/metabolism , RNA/chemistry , RNA/metabolism , DNA Methylation , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Dioxygenases , Epigenesis, Genetic , Humans , Models, Molecular , Oxidation-Reduction , Protein Conformation , Proto-Oncogene Proteins/chemistry , Proto-Oncogene Proteins/genetics , Substrate Specificity
9.
J Am Chem Soc ; 140(50): 17329-17332, 2018 12 19.
Article in English | MEDLINE | ID: mdl-30518204

ABSTRACT

Ten-eleven translocation (TET) enzymes catalyze repeated oxidations of 5-methylcytosine in genomic DNA. Because of the challenges of tracking reactivity within a complex DNA substrate, chemical tools to probe TET activity are limited, despite these enzyme's crucial role in epigenetic regulation. Here, building on precedents from related Fe(II)/α-ketoglutarate-dependent dioxygenases, we show that TET enzymes can promiscuously act upon cytosine bases with unnatural 5-position modifications. Oxidation of 5-vinylcytosine (vC) in DNA results in the predominant formation of a 5-formylmethylcytosine product that can be efficiently labeled to provide an end-point read-out for TET activity. The reaction with 5-ethynylcytosine (eyC), moreover, results in the formation of a high-energy ketene intermediate that can selectively trap any active TET isoform as a covalent enzyme-DNA complex, even in the complex milieu of a total cell lysate. Exploiting substrate promiscuity therefore offers a new and needed means to directly track TET activity in vitro or in vivo.


Subject(s)
DNA Probes/chemistry , DNA/chemistry , Dioxygenases/chemistry , Cross-Linking Reagents/chemistry , Cytosine/analogs & derivatives , Cytosine/chemistry , HEK293 Cells , Humans , Oxidation-Reduction , Substrate Specificity
10.
Nat Biotechnol ; 2018 Oct 08.
Article in English | MEDLINE | ID: mdl-30295673

ABSTRACT

Here we present APOBEC-coupled epigenetic sequencing (ACE-seq), a bisulfite-free method for localizing 5-hydroxymethylcytosine (5hmC) at single-base resolution with low DNA input. The method builds on the observation that AID/APOBEC family DNA deaminase enzymes can potently discriminate between cytosine modification states and exploits the non-destructive nature of enzymatic, rather than chemical, deamination. ACE-seq yielded high-confidence 5hmC profiles with at least 1,000-fold less DNA input than conventional methods. Applying ACE-seq to generate a base-resolution map of 5hmC in tissue-derived cortical excitatory neurons, we found that 5hmC was almost entirely confined to CG dinucleotides. The whole-genome map permitted cytosine, 5-methylcytosine (5mC) and 5hmC to be parsed and revealed genomic features that diverged from global patterns, including enhancers and imprinting control regions with high and low 5hmC/5mC ratios, respectively. Enzymatic deamination overcomes many challenges posed by bisulfite-based methods, thus expanding the scope of epigenome profiling to include scarce samples and opening new lines of inquiry regarding the role of cytosine modifications in genome biology.

11.
Nature ; 558(7709): 307-312, 2018 06.
Article in English | MEDLINE | ID: mdl-29849141

ABSTRACT

Cancer immunotherapy based on genetically redirecting T cells has been used successfully to treat B cell malignancies1-3. In this strategy, the T cell genome is modified by integration of viral vectors or transposons encoding chimaeric antigen receptors (CARs) that direct tumour cell killing. However, this approach is often limited by the extent of expansion and persistence of CAR T cells4,5. Here we report mechanistic insights from studies of a patient with chronic lymphocytic leukaemia treated with CAR T cells targeting the CD19 protein. Following infusion of CAR T cells, anti-tumour activity was evident in the peripheral blood, lymph nodes and bone marrow; this activity was accompanied by complete remission. Unexpectedly, at the peak of the response, 94% of CAR T cells originated from a single clone in which lentiviral vector-mediated insertion of the CAR transgene disrupted the methylcytosine dioxygenase TET2 gene. Further analysis revealed a hypomorphic mutation in this patient's second TET2 allele. TET2-disrupted CAR T cells exhibited an epigenetic profile consistent with altered T cell differentiation and, at the peak of expansion, displayed a central memory phenotype. Experimental knockdown of TET2 recapitulated the potency-enhancing effect of TET2 dysfunction in this patient's CAR T cells. These findings suggest that the progeny of a single CAR T cell induced leukaemia remission and that TET2 modification may be useful for improving immunotherapies.


Subject(s)
5-Methylcytosine/metabolism , Antigens, CD19/immunology , Dioxygenases/genetics , Immunotherapy/methods , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/therapy , T-Lymphocytes/immunology , T-Lymphocytes/transplantation , Adoptive Transfer , Aged , Alleles , Cell Differentiation , Clinical Trials as Topic , Clone Cells/cytology , Clone Cells/immunology , Dioxygenases/metabolism , Epigenesis, Genetic , HEK293 Cells , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , Mutation , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Transgenes
12.
Curr Opin Chem Biol ; 45: 10-17, 2018 08.
Article in English | MEDLINE | ID: mdl-29452938

ABSTRACT

The introduction of site-specific DNA modifications to the genome or epigenome presents great opportunities for manipulating biological systems. Such changes are now possible through the combination of DNA-modifying enzymes with targeting modules, including dCas9, that can localize the enzymes to specific sites. In this review, we take a DNA modifying enzyme-centric view of recent advances. We highlight the variety of natural DNA-modifying enzymes-including DNA methyltransferases, oxygenases, deaminases, and glycosylases-that can be used for targeted editing and discuss how insights into the structure and function of these enzymes has further expanded editing potential by introducing enzyme variants with altered activities or by improving spatiotemporal control of modifications.


Subject(s)
DNA Methylation , DNA/genetics , Epigenesis, Genetic , Gene Editing/methods , Adenine/metabolism , Animals , DNA/metabolism , DNA Modification Methylases/metabolism , Genome , Humans
13.
Nucleic Acids Res ; 45(13): 7655-7665, 2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28472485

ABSTRACT

AID/APOBEC family enzymes are best known for deaminating cytosine bases to uracil in single-stranded DNA, with characteristic sequence preferences that can produce mutational signatures in targets such as retroviral and cancer cell genomes. These deaminases have also been proposed to function in DNA demethylation via deamination of either 5-methylcytosine (mC) or TET-oxidized mC bases (ox-mCs), which include 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine. One specific family member, APOBEC3A (A3A), has been shown to readily deaminate mC, raising the prospect of broader activity on ox-mCs. To investigate this claim, we developed a novel assay that allows for parallel profiling of activity on all modified cytosines. Our steady-state kinetic analysis reveals that A3A discriminates against all ox-mCs by >3700-fold, arguing that ox-mC deamination does not contribute substantially to demethylation. A3A is, by contrast, highly proficient at C/mC deamination. Under conditions of excess enzyme, C/mC bases can be deaminated to completion in long DNA segments, regardless of sequence context. Interestingly, under limiting A3A, the sequence preferences observed with targeting unmodified cytosine are further exaggerated when deaminating mC. Our study informs how methylation, oxidation, and deamination can interplay in the genome and suggests A3A's potential utility as a biotechnological tool to discriminate between cytosine modification states.


Subject(s)
Cytidine Deaminase/metabolism , Cytosine/chemistry , DNA/chemistry , DNA/metabolism , Proteins/metabolism , 5-Methylcytosine/chemistry , Base Sequence , DNA Methylation , Humans , In Vitro Techniques , Kinetics , Models, Biological , Oxidation-Reduction , Recombinant Proteins/metabolism , Substrate Specificity
14.
Biochemistry ; 56(16): 2166-2169, 2017 04 25.
Article in English | MEDLINE | ID: mdl-28394581

ABSTRACT

Arabinosylcytosine (araC) is a mainstay in the initial treatment of acute myeloid leukemia (AML), although relapses are common. Given the recent recognition of altered DNA methylation patterns in relapsed AML, we considered whether araC, which acts by incorporation into DNA, could itself perturb methylation dynamics. To explore this possibility, we examined several DNA methyltransferases and find that araC embedded in DNA is consistently methylated with an efficiency diminished relative to that of deoxycytidine. Importantly, with the human maintenance methyltransferase DNMT1, the extent of araC methylation is reduced by more than ∼200-fold. These observations support a model whereby araC treatment may itself contribute to locus-specific, passive DNA demethylation in relapsed AML.


Subject(s)
Antimetabolites, Antineoplastic/metabolism , Cytarabine/metabolism , DNA Modification Methylases/metabolism , Epigenesis, Genetic , Leukemia, Myeloid, Acute/genetics , Antimetabolites, Antineoplastic/therapeutic use , Cytarabine/therapeutic use , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/enzymology
15.
Nat Chem Biol ; 13(2): 181-187, 2017 02.
Article in English | MEDLINE | ID: mdl-27918559

ABSTRACT

Ten-eleven translocation (TET) enzymes catalyze stepwise oxidation of 5-methylcytosine (mC) to yield 5-hydroxymethylcytosine (hmC) and the rarer bases 5-formylcytosine (fC) and 5-carboxylcytosine (caC). Stepwise oxidation obscures how each individual base forms and functions in epigenetic regulation, and prompts the question of whether TET enzymes primarily serve to generate hmC or are adapted to produce fC and caC as well. By mutating a single, conserved active site residue in human TET2, Thr1372, we uncovered enzyme variants that permit oxidation to hmC but largely eliminate fC and caC. Biochemical analyses, combined with molecular dynamics simulations, elucidated an active site scaffold that is required for wild-type (WT) stepwise oxidation and that, when perturbed, explains the mutants' hmC-stalling phenotype. Our results suggest that the TET2 active site is shaped to enable higher-order oxidation and provide the first TET variants that could be used to probe the biological functions of hmC separately from fC and caC.


Subject(s)
5-Methylcytosine/analogs & derivatives , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Mutation , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/metabolism , 5-Methylcytosine/chemistry , 5-Methylcytosine/metabolism , Catalytic Domain/genetics , DNA-Binding Proteins/chemistry , Dioxygenases , HEK293 Cells , Humans , Molecular Dynamics Simulation , Oxidation-Reduction , Proto-Oncogene Proteins/chemistry
16.
Curr Opin Chem Biol ; 33: 67-73, 2016 08.
Article in English | MEDLINE | ID: mdl-27315338

ABSTRACT

Chemical modifications to genomic DNA can expand and shape its coding potential. Cytosine methylation in particular has well-established roles in regulating gene expression and defining cellular identity. The discovery of TET family enzymes opened a major frontier beyond DNA methylation, revealing three oxidized forms of cytosine that could mediate DNA demethylation or encode independent epigenetic functions. Chemical biology has been instrumental in uncovering TET's intricate reaction mechanisms and scope of reactivity on a surprising variety of substrates. Moreover, innovative chemoenzymatic strategies have enabled sensitive detection of oxidized cytosine products in vitro and in vivo. We highlight key recent developments that demonstrate how chemical biology is advancing our understanding of the extended, dynamic epigenome.


Subject(s)
Epigenesis, Genetic , Animals , Cytosine/metabolism , Humans
17.
Mol Cell ; 60(5): 755-768, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26626480

ABSTRACT

Poly(ADP-ribose) polymerase-1 (PARP-1) creates the posttranslational modification PAR from substrate NAD(+) to regulate multiple cellular processes. DNA breaks sharply elevate PARP-1 catalytic activity to mount a cell survival repair response, whereas persistent PARP-1 hyperactivation during severe genotoxic stress is associated with cell death. The mechanism for tight control of the robust catalytic potential of PARP-1 remains unclear. By monitoring PARP-1 dynamics using hydrogen/deuterium exchange-mass spectrometry (HXMS), we unexpectedly find that a specific portion of the helical subdomain (HD) of the catalytic domain rapidly unfolds when PARP-1 encounters a DNA break. Together with biochemical and crystallographic analysis of HD deletion mutants, we show that the HD is an autoinhibitory domain that blocks productive NAD(+) binding. Our molecular model explains how PARP-1 DNA damage detection leads to local unfolding of the HD that relieves autoinhibition, and has important implications for the design of PARP inhibitors.


Subject(s)
DNA/metabolism , Poly(ADP-ribose) Polymerases/chemistry , Poly(ADP-ribose) Polymerases/metabolism , Protein Unfolding , Catalytic Domain , Crystallography, X-Ray , DNA Breaks , DNA Repair , Deuterium Exchange Measurement , Humans , Models, Molecular , Mutation , NAD/metabolism , Poly (ADP-Ribose) Polymerase-1 , Poly(ADP-ribose) Polymerases/genetics , Protein Structure, Secondary
18.
J Cell Biol ; 208(5): 521-31, 2015 Mar 02.
Article in English | MEDLINE | ID: mdl-25713413

ABSTRACT

The centromere-defined by the presence of nucleosomes containing the histone H3 variant, CENP-A-is the chromosomal locus required for the accurate segregation of chromosomes during cell division. Although the sequence determinants of human CENP-A required to maintain a centromere were reported, those that are required for early steps in establishing a new centromere are unknown. In this paper, we used gain-of-function histone H3 chimeras containing various regions unique to CENP-A to investigate early events in centromere establishment. We targeted histone H3 chimeras to chromosomally integrated Lac operator sequences by fusing each of the chimeras to the Lac repressor. Using this approach, we found surprising contributions from a small portion of the N-terminal tail and the CENP-A targeting domain in the initial recruitment of two essential constitutive centromere proteins, CENP-C and CENP-T. Our results indicate that the regions of CENP-A required for early events in centromere establishment differ from those that are required for maintaining centromere identity.


Subject(s)
Autoantigens/metabolism , Centromere/metabolism , Chromosomal Proteins, Non-Histone/metabolism , Histones/metabolism , Autoantigens/genetics , Cell Line, Tumor , Centromere/genetics , Centromere Protein A , Chromosomal Proteins, Non-Histone/genetics , Histones/genetics , Humans , Protein Structure, Tertiary
19.
Nucleic Acids Res ; 42(7): 4318-31, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24493739

ABSTRACT

Histone chaperones are a diverse class of proteins that facilitate chromatin assembly. Their ability to stabilize highly abundant histone proteins in the cellular environment prevents non-specific interactions and promotes nucleosome formation, but the various mechanisms for doing so are not well understood. We now focus on the dynamic features of the DAXX histone chaperone that have been elusive from previous structural studies. Using hydrogen/deuterium exchange coupled to mass spectrometry (H/DX-MS), we elucidate the concerted binding-folding of DAXX with histone variants H3.3/H4 and H3.2/H4 and find that high local stability at the variant-specific recognition residues rationalizes its known selectivity for H3.3. We show that the DAXX histone binding domain is largely disordered in solution and that formation of the H3.3/H4/DAXX complex induces folding and dramatic global stabilization of both histone and chaperone. Thus, DAXX uses a novel strategy as a molecular chaperone that paradoxically couples its own folding to substrate recognition and binding. Further, we propose a model for the chromatin assembly reaction it mediates, including a stepwise folding pathway that helps explain the fidelity of DAXX in associating with the H3.3 variant, despite an extensive and nearly identical binding surface on its counterparts, H3.1 and H3.2.


Subject(s)
Histone Chaperones/chemistry , Histones/chemistry , Histone Chaperones/metabolism , Histones/genetics , Histones/metabolism , Models, Molecular , Mutation , Protein Folding , Protein Multimerization , Protein Stability , Protein Structure, Secondary , Protein Unfolding
20.
Front Genet ; 4: 264, 2013 Dec 20.
Article in English | MEDLINE | ID: mdl-24391660

ABSTRACT

Histone proteins are dynamically modified to mediate a variety of cellular processes including gene transcription, DNA damage repair, and apoptosis. Regulation of these processes occurs through the recruitment of non-histone proteins to chromatin by specific combinations of histone post-translational modifications (PTMs). Mass spectrometry has emerged as an essential tool to discover and quantify histone PTMs both within and between samples in an unbiased manner. Developments in mass spectrometry that allow for characterization of large histone peptides or intact protein has made it possible to determine which modifications occur simultaneously on a single histone polypeptide. A variety of techniques from biochemistry, biophysics, and chemical biology have been employed to determine the biological relevance of discovered combinatorial codes. This review first describes advancements in the field of mass spectrometry that have facilitated histone PTM analysis and then covers notable approaches to probe the biological relevance of these modifications in their nucleosomal context.

SELECTION OF CITATIONS
SEARCH DETAIL
...