Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Neuro Oncol ; 22(8): 1150-1161, 2020 08 17.
Article in English | MEDLINE | ID: mdl-32296841

ABSTRACT

BACKGROUND: Imagining ways to prevent or treat glioblastoma (GBM) has been hindered by a lack of understanding of its pathogenesis. Although overexpression of platelet derived growth factor with two A-chains (PDGF-AA) may be an early event, critical details of the core biology of GBM are lacking. For example, existing PDGF-driven models replicate its microscopic appearance, but not its genomic architecture. Here we report a model that overcomes this barrier to authenticity. METHODS: Using a method developed to establish neural stem cell cultures, we investigated the effects of PDGF-AA on subventricular zone (SVZ) cells, one of the putative cells of origin of GBM. We microdissected SVZ tissue from p53-null and wild-type adult mice, cultured cells in media supplemented with PDGF-AA, and assessed cell viability, proliferation, genome stability, and tumorigenicity. RESULTS: Counterintuitive to its canonical role as a growth factor, we observed abrupt and massive cell death in PDGF-AA: wild-type cells did not survive, whereas a small fraction of null cells evaded apoptosis. Surviving null cells displayed attenuated proliferation accompanied by whole chromosome gains and losses. After approximately 100 days in PDGF-AA, cells suddenly proliferated rapidly, acquired growth factor independence, and became tumorigenic in immune-competent mice. Transformed cells had an oligodendrocyte precursor-like lineage marker profile, were resistant to platelet derived growth factor receptor alpha inhibition, and harbored highly abnormal karyotypes similar to human GBM. CONCLUSION: This model associates genome instability in neural progenitor cells with chronic exposure to PDGF-AA and is the first to approximate the genomic landscape of human GBM and the first in which the earliest phases of the disease can be studied directly.


Subject(s)
Brain Neoplasms , Glioblastoma , Neural Stem Cells , Platelet-Derived Growth Factor , Tumor Suppressor Protein p53 , Animals , Brain Neoplasms/chemically induced , Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cells, Cultured , Glioblastoma/chemically induced , Glioblastoma/genetics , Glioblastoma/metabolism , Glioblastoma/pathology , Lateral Ventricles/drug effects , Lateral Ventricles/metabolism , Lateral Ventricles/pathology , Mice , Mice, Inbred C57BL , Neural Stem Cells/drug effects , Neural Stem Cells/pathology , Platelet-Derived Growth Factor/pharmacology , Tumor Suppressor Protein p53/deficiency , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...