Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters











Publication year range
1.
Biomolecules ; 13(11)2023 11 01.
Article in English | MEDLINE | ID: mdl-38002285

ABSTRACT

Formation of active HIV-1 reverse transcriptase (RT) proceeds via a structural maturation process that involves subdomain rearrangements and formation of an asymmetric p66/p66' homodimer. These studies were undertaken to evaluate whether the information about this maturation process can be used to identify small molecule ligands that retard or interfere with the steps involved. We utilized the isolated polymerase domain, p51, rather than p66, since the initial subdomain rearrangements are largely limited to this domain. Target sites at subdomain interfaces were identified and computational analysis used to obtain an initial set of ligands for screening. Chromatographic evaluations of the p51 homodimer/monomer ratio support the feasibility of this approach. Ligands that bind near the interfaces and a ligand that binds directly to a region of the fingers subdomain involved in subunit interface formation were identified, and the interactions were further characterized by NMR spectroscopy and X-ray crystallography. Although these ligands were found to reduce dimer formation, further efforts will be required to obtain ligands with higher binding affinity. In contrast with previous ligand identification studies performed on the RT heterodimer, subunit interface surfaces are solvent-accessible in the p51 and p66 monomers, making these constructs preferable for identification of ligands that directly interfere with dimerization.


Subject(s)
HIV Reverse Transcriptase , Ligands , HIV Reverse Transcriptase/chemistry , Dimerization , Magnetic Resonance Spectroscopy
2.
Nucleic Acids Res ; 51(16): 8836-8849, 2023 09 08.
Article in English | MEDLINE | ID: mdl-37427795

ABSTRACT

The Drosophila melanogaster protein Glorund (Glo) represses nanos (nos) translation and uses its quasi-RNA recognition motifs (qRRMs) to recognize both G-tract and structured UA-rich motifs within the nos translational control element (TCE). We showed previously that each of the three qRRMs is multifunctional, capable of binding to G-tract and UA-rich motifs, yet if and how the qRRMs combine to recognize the nos TCE remained unclear. Here we determined solution structures of a nos TCEI_III RNA containing the G-tract and UA-rich motifs. The RNA structure demonstrated that a single qRRM is physically incapable of recognizing both RNA elements simultaneously. In vivo experiments further indicated that any two qRRMs are sufficient to repress nos translation. We probed interactions of Glo qRRMs with TCEI_III RNA using NMR paramagnetic relaxation experiments. Our in vitro and in vivo data support a model whereby tandem Glo qRRMs are indeed multifunctional and interchangeable for recognition of TCE G-tract or UA-rich motifs. This study illustrates how multiple RNA recognition modules within an RNA-binding protein may combine to diversify the RNAs that are recognized and regulated.


Subject(s)
Drosophila Proteins , RNA , Animals , Drosophila/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/metabolism , Protein Biosynthesis , RNA/chemistry
3.
Front Allergy ; 4: 1133412, 2023.
Article in English | MEDLINE | ID: mdl-36960093

ABSTRACT

Introduction: Pet lipocalins are respiratory allergens with a central hydrophobic ligand-binding cavity called a calyx. Molecules carried in the calyx by allergens are suggested to influence allergenicity, but little is known about the native ligands. Methods: To provide more information on prospective ligands, we report crystal structures, NMR, molecular dynamics, and florescence studies of a dog lipocalin allergen Can f 1 and its closely related (and cross-reactive) cat allergen Fel d 7. Results: Structural comparisons with reported lipocalins revealed that Can f 1 and Fel d 7 calyxes are open and positively charged while other dog lipocalin allergens are closed and negatively charged. We screened fatty acids as surrogate ligands, and found that Can f 1 and Fel d 7 bind multiple ligands with preferences for palmitic acid (16:0) among saturated fatty acids and oleic acid (18:1 cis-9) among unsaturated ones. NMR analysis of methyl probes reveals that conformational changes occur upon binding of pinolenic acid inside the calyx. Molecular dynamics simulation shows that the carboxylic group of fatty acids shuttles between two positively charged amino acids inside the Can f 1 and Fel d 7 calyx. Consistent with simulations, the stoichiometry of oleic acid-binding is 2:1 (fatty acid: protein) for Can f 1 and Fel d 7. Discussion: The results provide valuable insights into the determinants of selectivity and candidate ligands for pet lipocalin allergens Can f 1 and Fel d 7.

4.
J Agric Food Chem ; 71(6): 2990-2998, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36728846

ABSTRACT

Peanut and tree-nut allergies are frequently comorbid for reasons not completely understood. Vicilin-buried peptides (VBPs) are an emerging family of food allergens whose conserved structural fold could mediate peanut/tree-nut co-allergy. Peptide microarrays were used to identify immunoglobulin E (IgE) epitopes from the N-terminus of the vicilin allergens Ara h 1, Ana o 1, Jug r 2, and Pis v 3 using serum from three patient diagnosis groups: monoallergic to either peanuts or cashew/pistachio, or dual allergic. IgE binding peptides were highly prevalent in the VBP domains AH1.1, AO1.1, JR2.1, and PV3.1, but not in AO1.2, JR2.2, JR2.3, and PV3.2 nor the unstructured regions. The IgE profiles did not correlate with diagnosis group. The structure of the VBPs from cashew and pistachio was solved using solution-NMR. Comparisons of structural features suggest that the VBP scaffold from peanuts and tree-nuts can support cross-reactivity. This may help understand comorbidity and cross-reactivity despite a distant evolutionary origin.


Subject(s)
Anacardium , Arachis , Immunoglobulin E , Juglans , Pistacia , Humans , Allergens/chemistry , Allergens/immunology , Anacardium/chemistry , Arachis/chemistry , Immunoglobulin E/immunology , Juglans/chemistry , Nut Hypersensitivity/diagnosis , Nuts/chemistry , Peptides/chemistry , Peptides/immunology , Pistacia/chemistry , Cross Reactions
5.
Int J Mol Sci ; 23(10)2022 May 12.
Article in English | MEDLINE | ID: mdl-35628231

ABSTRACT

Variable domains of camelid antibodies (so-called nanobodies or VHH) are the smallest antibody fragments that retain complete functionality and therapeutic potential. Understanding of the nanobody-binding interface has become a pre-requisite for rational antibody design and engineering. The nanobody-binding interface consists of up to three hypervariable loops, known as the CDR loops. Here, we structurally and dynamically characterize the conformational diversity of an anti-GFP-binding nanobody by using molecular dynamics simulations in combination with experimentally derived data from nuclear magnetic resonance (NMR) spectroscopy. The NMR data contain both structural and dynamic information resolved at various timescales, which allows an assessment of the quality of protein MD simulations. Thus, in this study, we compared the ensembles for the anti-GFP-binding nanobody obtained from MD simulations with results from NMR. We find excellent agreement of the NOE-derived distance maps obtained from NMR and MD simulations and observe similar conformational spaces for the simulations with and without NOE time-averaged restraints. We also compare the measured and calculated order parameters and find generally good agreement for the motions observed in the ps-ns timescale, in particular for the CDR3 loop. Understanding of the CDR3 loop dynamics is especially critical for nanobodies, as this loop is typically critical for antigen recognition.


Subject(s)
Single-Domain Antibodies , Binding Sites, Antibody , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy/methods , Molecular Dynamics Simulation
6.
J Agric Food Chem ; 70(7): 2389-2400, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35139305

ABSTRACT

Vicilin-buried peptides (VBPs) from edible plants are derived from the N-terminal leader sequences (LSs) of seed storage proteins. VBPs are defined by a common α-hairpin fold mediated by conserved CxxxCx(10-14)CxxxC motifs. Here, peanut and walnut VBPs were characterized as potential mediators of both peanut/walnut allergenicity and cross-reactivity despite their low (∼17%) sequence identity. The structures of one peanut (AH1.1) and 3 walnut (JR2.1, JR2.2, JR2.3) VBPs were solved using solution NMR, revealing similar α-hairpin structures stabilized by disulfide bonds with high levels of surface similarity. Peptide microarrays identified several peptide sequences primarily on AH1.1 and JR2.1, which were recognized by peanut-, walnut-, and dual-allergic patient IgE, establishing these peanut and walnut VBPs as potential mediators of allergenicity and cross-reactivity. JR2.2 and JR2.3 displayed extreme resilience against endosomal digestion, potentially hindering epitope generation and likely contributing to their reduced allergic potential.


Subject(s)
Allergens/immunology , Antigens, Plant/immunology , Arachis , Juglans , Seed Storage Proteins/immunology , Allergens/chemistry , Antigens, Plant/chemistry , Arachis/chemistry , Cross Reactions , Humans , Immunoglobulin E/immunology , Juglans/chemistry , Peptides/chemistry , Peptides/immunology , Seed Storage Proteins/chemistry
9.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Article in English | MEDLINE | ID: mdl-33688047

ABSTRACT

The mosquito protein AEG12 is up-regulated in response to blood meals and flavivirus infection though its function remained elusive. Here, we determine the three-dimensional structure of AEG12 and describe the binding specificity of acyl-chain ligands within its large central hydrophobic cavity. We show that AEG12 displays hemolytic and cytolytic activity by selectively delivering unsaturated fatty acid cargoes into phosphatidylcholine-rich lipid bilayers. This property of AEG12 also enables it to inhibit replication of enveloped viruses such as Dengue and Zika viruses at low micromolar concentrations. Weaker inhibition was observed against more distantly related coronaviruses and lentivirus, while no inhibition was observed against the nonenveloped virus adeno-associated virus. Together, our results uncover the mechanistic understanding of AEG12 function and provide the necessary implications for its use as a broad-spectrum therapeutic against cellular and viral targets.


Subject(s)
Antiviral Agents/metabolism , Hemolytic Agents/metabolism , Insect Proteins/metabolism , Lipids , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Cell Line , Cell Membrane/metabolism , Culicidae , Erythrocytes/drug effects , Fatty Acids, Unsaturated/metabolism , Hemolytic Agents/chemistry , Hemolytic Agents/pharmacology , Humans , Hydrophobic and Hydrophilic Interactions , Insect Proteins/chemistry , Insect Proteins/pharmacology , Ligands , Lipids/chemistry , Protein Binding , Protein Structure, Tertiary , Viral Envelope/metabolism , Viruses/drug effects , Viruses/metabolism
10.
Anal Bioanal Chem ; 412(25): 6789-6809, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32865633

ABSTRACT

Ginkgo biloba extract (GbE) is a dietary supplement derived from an ethanolic extract of Ginkgo biloba leaves. Unfinished bulk GbE is used to make finished products that are sold as dietary supplements. The variable, complex composition of GbE makes it difficult to obtain consistent toxicological assessments of potential risk. The National Toxicology Program (NTP) observed hepatotoxicity in its rodent studies of a commercially available, unfinished GbE product, but the application of these results to the broader GbE supplement market is unclear. Here, we use a combination of non-targeted and targeted chromatographic and spectrophotometric methods to obtain profiles of 24 commercially available finished GbE products and unfinished standardized and unstandardized extracts with and without hydrolysis, then used principal component analysis to group unfinished products according to their similarity to each other and to National Institute of Standards and Technology (NIST) standard reference materials (SRM), and the finished products. Unfinished products were grouped into those that were characteristic and uncharacteristic of standardized GbE. Our work demonstrates that different analytical approaches produced similar classifications of characteristic and uncharacteristic products in unhydrolyzed samples, but the distinctions largely disappeared once the samples were hydrolyzed. Using our approach, the NTP GbE was most similar to two unfinished GbE products classified as characteristic, finished products, and the NIST GbE SRM. We propose that a simple analysis for the presence, absence, or amounts of compounds unique to GbE in unhydrolyzed samples could be sufficient to determine a sample's authenticity.Graphical abstract.


Subject(s)
Ginkgo biloba/chemistry , Phytochemicals/analysis , Plant Extracts/chemistry , Chromatography, High Pressure Liquid/methods , Dietary Supplements , Magnetic Resonance Spectroscopy/methods , Plant Leaves/chemistry , Reference Standards , Reproducibility of Results
11.
J Immunol ; 205(8): 1999-2007, 2020 10 15.
Article in English | MEDLINE | ID: mdl-32907999

ABSTRACT

IgE Abs drive the symptoms of allergic disease upon cross-linking allergens on mast cells or basophils. If the IgE binding sites on the allergens could be identified, it may be useful for creating new forms of immunotherapy. However, direct knowledge of the human IgE (hIgE) epitopes is limited because of the very low frequency of IgE-producing B cells in blood. A new hybridoma technology using human B cells from house dust mite-allergic patients was used to identify four Der p 2-specific hIgE mAbs. Their relative binding sites were assessed and compared by immunoassays with three previously studied murine IgG mAbs. Immunoassays showed that the recognition of Der p 2 by the first three hIgE was inhibited by a single murine IgG, but the fourth hIgE recognized a different epitope from all the other mAbs. The functional ability of the hIgE that bind different epitopes to cross-link Der p 2 was demonstrated in a mouse model of passive systemic anaphylaxis. Nuclear magnetic resonance analyses of Der p 2 in complex with IgG and IgE Abs were used to identify specific residues in the epitopes. To our knowledge, the combination of immunoassays to distinguish overlapping epitopes and nuclear magnetic resonance analyses to identify specific residues involved in Ab binding provided the first epitope mapping of hIgE mAbs to an allergen. The technologies developed in this study will be useful in high-resolution mapping of human epitopes on other Ags and the design of improved therapeutics.


Subject(s)
Antibodies, Monoclonal/immunology , Antigens, Dermatophagoides/immunology , Arthropod Proteins/immunology , Epitope Mapping , Epitopes/immunology , Immunoglobulin E/immunology , Humans
12.
J Med Chem ; 63(15): 8314-8324, 2020 08 13.
Article in English | MEDLINE | ID: mdl-32658475

ABSTRACT

Although nonsteroidal anti-inflammatory drugs (NSAIDs) target primarily cyclooxygenase enzymes, a subset of NSAIDs containing carboxylate groups also has been reported to competitively inhibit dihydrofolate reductase (DHFR). In this study, we have characterized NSAID interactions with human DHFR based on kinetic, NMR, and X-ray crystallographic methods. The NSAIDs target a region of the folate binding site that interacts with the p-aminobenzoyl-l-glutamate (pABG) moiety of folate and inhibit cooperatively with ligands that target the adjacent pteridine-recognition subsite. NSAIDs containing benzoate or salicylate groups were identified as having the highest potency. Among those tested, diflunisal, a salicylate derivative not previously identified to have anti-folate activity, was found to have a Ki of 34 µM, well below peak plasma diflunisal levels reached at typical dosage levels. The potential of these drugs to interfere with the inflammatory process by multiple pathways introduces the possibility of further optimization to design dual-targeted analogs.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Folic Acid Antagonists/chemistry , Folic Acid Antagonists/pharmacology , Tetrahydrofolate Dehydrogenase/metabolism , Binding Sites/drug effects , Crystallography, X-Ray , Drug Design , Folic Acid/metabolism , Humans , Models, Molecular , Tetrahydrofolate Dehydrogenase/chemistry
13.
Sci Rep ; 9(1): 18294, 2019 12 04.
Article in English | MEDLINE | ID: mdl-31797892

ABSTRACT

The cockroach allergen Bla g 1 forms a novel fold consisting of 12 amphipathic alpha-helices enclosing an exceptionally large hydrophobic cavity which was previously demonstrated to bind a variety of lipids. Since lipid-dependent immunoactivity is observed in numerous allergens, understanding the structural basis of this interaction could yield insights into the molecular determinants of allergenicity. Here, we report atomic modelling of Bla g 1 bound to both fatty-acid and phospholipids ligands, with 8 acyl chains suggested to represent full stoichiometric binding. This unusually high occupancy was verified experimentally, though both modelling and circular dichroism indicate that the general alpha-helical structure is maintained regardless of cargo loading. Fatty-acid cargoes significantly enhanced thermostability while inhibiting cleavage by cathepsin S, an endosomal protease essential for antigen processing and presentation; the latter of which was found to correlate to a decreased production of known T-cell epitopes. Both effects were strongly dependent on acyl chain length, with 18-20 carbons providing the maximal increase in melting temperature (~20 °C) while completely abolishing proteolysis. Diacyl chain cargoes provided similar enhancements to thermostability, but yielded reduced levels of proteolytic resistance. This study describes how the biophysical properties of Bla g 1 ligand binding and digestion may relate to antigen processing, with potential downstream implications for immunogenicity.


Subject(s)
Allergens , Blattellidae/immunology , Insect Proteins , Allergens/chemistry , Allergens/immunology , Animals , Antigen Presentation , Fatty Acids/immunology , Fatty Acids/metabolism , Insect Proteins/chemistry , Insect Proteins/immunology , Ligands , Phospholipids/immunology , Phospholipids/metabolism , Protein Binding/immunology , Protein Stability , Protein Structure, Tertiary
14.
J Immunol ; 203(9): 2545-2556, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31554696

ABSTRACT

Der p 2 is one of the most important allergens from the house dust mite Dermatophagoides pteronyssinus Identification of human IgE Ab binding epitopes can be used for rational design of allergens with reduced IgE reactivity for therapy. Antigenic analysis of Der p 2 was performed by site-directed mutagenesis based on the x-ray crystal structure of the allergen in complex with a Fab from the murine IgG mAb 7A1 that binds an epitope overlapping with human IgE binding sites. Conformational changes upon Ab binding were confirmed by nuclear magnetic resonance using a 7A1-single-chain variable fragment. In addition, a human IgE Ab construct that interferes with mAb 7A1 binding was isolated from a combinatorial phage-display library constructed from a mite-allergic patient and expressed as two recombinant forms (single-chain Fab in Pichia pastoris and Fab in Escherichia coli). These two IgE Ab constructs and the mAb 7A1 failed to recognize two Der p 2 epitope double mutants designed to abolish the allergen-Ab interaction while preserving the fold necessary to bind Abs at other sites of the allergen surface. A 10-100-fold reduction in binding of IgE from allergic subjects to the mutants additionally showed that the residues mutated were involved in IgE Ab binding. In summary, mutagenesis of a Der p 2 epitope defined by x-ray crystallography revealed an IgE Ab binding site that will be considered for the design of hypoallergens for immunotherapy.


Subject(s)
Antibodies, Monoclonal/immunology , Antigens, Dermatophagoides/immunology , Arthropod Proteins/immunology , Binding Sites, Antibody , Desensitization, Immunologic/methods , Immunoglobulin E/immunology , Antibodies, Monoclonal/chemistry , Antigens, Dermatophagoides/chemistry , Arthropod Proteins/chemistry , Crystallography, X-Ray , Epitopes/immunology , Humans , Magnetic Resonance Spectroscopy , Mutagenesis, Site-Directed , Protein Conformation , Recombinant Proteins/immunology
15.
Nucleic Acids Res ; 46(14): 7309-7322, 2018 08 21.
Article in English | MEDLINE | ID: mdl-29917149

ABSTRACT

DNA polymerase ß (pol ß) plays a central role in the DNA base excision repair pathway and also serves as an important model polymerase. Dynamic characterization of pol ß from methyl-TROSY 13C-1H multiple quantum CPMG relaxation dispersion experiments of Ile and Met sidechains and previous backbone relaxation dispersion measurements, reveals transitions in µs-ms dynamics in response to highly variable substrates. Recognition of a 1-nt-gapped DNA substrate is accompanied by significant backbone and sidechain motion in the lyase domain and the DNA binding subdomain of the polymerase domain, that may help to facilitate binding of the apoenzyme to the segments of the DNA upstream and downstream from the gap. Backbone µs-ms motion largely disappears after formation of the pol ß-DNA complex, giving rise to an increase in uncoupled µs-ms sidechain motion throughout the enzyme. Formation of an abortive ternary complex using a non-hydrolyzable dNTP results in sidechain motions that fit to a single exchange process localized to the catalytic subdomain, suggesting that this motion may play a role in catalysis.


Subject(s)
DNA Polymerase beta/chemistry , DNA Repair , DNA/chemistry , Protein Conformation , Apoenzymes/chemistry , Apoenzymes/genetics , Apoenzymes/metabolism , Biocatalysis , Crystallography, X-Ray , DNA/genetics , DNA/metabolism , DNA Polymerase beta/genetics , DNA Polymerase beta/metabolism , Kinetics , Models, Molecular , Motion , Nuclear Magnetic Resonance, Biomolecular , Nucleic Acid Conformation , Protein Binding , Substrate Specificity , Time Factors
16.
Nucleic Acids Res ; 45(21): 12374-12387, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29059378

ABSTRACT

Aprataxin and PNKP-like factor (APLF) is a DNA repair factor containing a forkhead-associated (FHA) domain that supports binding to the phosphorylated FHA domain binding motifs (FBMs) in XRCC1 and XRCC4. We have characterized the interaction of the APLF FHA domain with phosphorylated XRCC1 peptides using crystallographic, NMR, and fluorescence polarization studies. The FHA-FBM interactions exhibit significant pH dependence in the physiological range as a consequence of the atypically high pK values of the phosphoserine and phosphothreonine residues and the preference for a dianionic charge state of FHA-bound pThr. These high pK values are characteristic of the polyanionic peptides typically produced by CK2 phosphorylation. Binding affinity is greatly enhanced by residues flanking the crystallographically-defined recognition motif, apparently as a consequence of non-specific electrostatic interactions, supporting the role of XRCC1 in nuclear cotransport of APLF. The FHA domain-dependent interaction of XRCC1 with APLF joins repair scaffolds that support single-strand break repair and non-homologous end joining (NHEJ). It is suggested that for double-strand DNA breaks that have initially formed a complex with PARP1 and its binding partner XRCC1, this interaction acts as a backup attempt to intercept the more error-prone alternative NHEJ repair pathway by recruiting Ku and associated NHEJ factors.


Subject(s)
DNA-(Apurinic or Apyrimidinic Site) Lyase/chemistry , Poly-ADP-Ribose Binding Proteins/chemistry , X-ray Repair Cross Complementing Protein 1/chemistry , Binding Sites , Casein Kinase II/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Hydrogen-Ion Concentration , Models, Molecular , Phosphopeptides/chemistry , Phosphopeptides/metabolism , Phosphothreonine/metabolism , Poly-ADP-Ribose Binding Proteins/metabolism , Protein Binding , Protein Interaction Domains and Motifs , X-ray Repair Cross Complementing Protein 1/metabolism
17.
Biochemistry ; 56(36): 4786-4798, 2017 09 12.
Article in English | MEDLINE | ID: mdl-28766937

ABSTRACT

Metformin is the most commonly prescribed treatment for type II diabetes and related disorders; however, molecular insights into its mode(s) of action have been limited by an absence of structural data. Structural considerations along with a growing body of literature demonstrating its effects on one-carbon metabolism suggest the possibility of folate mimicry and anti-folate activity. Motivated by the growing recognition that anti-diabetic biguanides may act directly upon the gut microbiome, we have determined structures of the complexes formed between the anti-diabetic biguanides (phenformin, buformin, and metformin) and Escherichia coli dihydrofolate reductase (ecDHFR) based on nuclear magnetic resonance, crystallographic, and molecular modeling studies. Interligand Overhauser effects indicate that metformin can form ternary complexes with p-aminobenzoyl-l-glutamate (pABG) as well as other ligands that occupy the region of the folate-binding site that interacts with pABG; however, DHFR inhibition is not cooperative. The biguanides competitively inhibit the activity of ecDHFR, with the phenformin inhibition constant being 100-fold lower than that of metformin. This inhibition may be significant at concentrations present in the gut of treated individuals, and inhibition of DHFR in intestinal mucosal cells may also occur if accumulation levels are sufficient. Perturbation of folate homeostasis can alter the pyridine nucleotide redox ratios that are important regulators of cellular metabolism.


Subject(s)
Biguanides/chemistry , Biguanides/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Tetrahydrofolate Dehydrogenase/metabolism , Binding Sites , Crystallization , Escherichia coli/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism , Folic Acid Antagonists/chemistry , Folic Acid Antagonists/pharmacology , Models, Molecular , Molecular Structure , Protein Conformation , Structure-Activity Relationship
18.
Biochem J ; 474(19): 3321-3338, 2017 09 24.
Article in English | MEDLINE | ID: mdl-28811321

ABSTRACT

Recent structural characterizations of the p51 and p66 monomers have established an important starting point for understanding the maturation pathway of the human immunodeficiency virus (HIV)-1 reverse transcriptase p66/p51 heterodimer. This process requires a metamorphic transition of the polymerase domain leading to formation of a p66/p66' homodimer that exists as a structural heterodimer. To better understand the drivers for this metamorphic transition, we have performed NMR studies of 15N-labeled RT216 - a construct that includes the fingers and most of the palm domains. These studies are consistent with the conclusion that the p66 monomer exists as a spring-loaded complex. Initial dissociation of the fingers/palm : connection complex allows the fingers/palm to adopt an alternate, more stable structure, reducing the rate of reassociation and facilitating subsequent maturation steps. One of the drivers for an initial extension of the fingers/palm domains is identified as a straightening of helix E relative to its conformation in the monomer by eliminating a bend of ∼50° near residue Phe160. NMR and circular dichroism data also are consistent with the conclusion that a hydrophobic surface of palm domain that becomes exposed after the initial dissociation, as well as the intrinsic conformational preferences of the palm domain C-terminal segment, facilitates the formation of the ß-sheet structure that is unique to the active polymerase subunit. Spectral comparisons based on 15N-labeled constructs are all consistent with previous structural conclusions based on studies of 13C-methyl-labeled constructs.


Subject(s)
HIV Reverse Transcriptase/chemistry , HIV Reverse Transcriptase/metabolism , Circular Dichroism , HIV Reverse Transcriptase/genetics , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Dynamics Simulation , Nitrogen Isotopes , Protein Conformation , Protein Domains , Protein Multimerization
19.
Proc Natl Acad Sci U S A ; 114(2): 304-309, 2017 01 10.
Article in English | MEDLINE | ID: mdl-28028224

ABSTRACT

The Xenopus laevis APE2 (apurinic/apyrimidinic endonuclease 2) nuclease participates in 3'-5' nucleolytic resection of oxidative DNA damage and activation of the ATR-Chk1 DNA damage response (DDR) pathway via ill-defined mechanisms. Here we report that APE2 resection activity is regulated by DNA interactions in its Zf-GRF domain, a region sharing high homology with DDR proteins Topoisomerase 3α (TOP3α) and NEIL3 (Nei-like DNA glycosylase 3), as well as transcription and RNA regulatory proteins, such as TTF2 (transcription termination factor 2), TFIIS, and RPB9. Biochemical and NMR results establish the nucleic acid-binding activity of the Zf-GRF domain. Moreover, an APE2 Zf-GRF X-ray structure and small-angle X-ray scattering analyses show that the Zf-GRF fold is typified by a crescent-shaped ssDNA binding claw that is flexibly appended to an APE2 endonuclease/exonuclease/phosphatase (EEP) catalytic core. Structure-guided Zf-GRF mutations impact APE2 DNA binding and 3'-5' exonuclease processing, and also prevent efficient APE2-dependent RPA recruitment to damaged chromatin and activation of the ATR-Chk1 DDR pathway in response to oxidative stress in Xenopus egg extracts. Collectively, our data unveil the APE2 Zf-GRF domain as a nucleic acid interaction module in the regulation of a key single-strand break resection function of APE2, and also reveal topologic similarity of the Zf-GRF to the zinc ribbon domains of TFIIS and RPB9.


Subject(s)
DNA Damage/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Oxidative Stress/genetics , Animals , DNA Glycosylases/metabolism , DNA Repair/genetics , DNA Topoisomerases, Type I/metabolism , Endonucleases/metabolism , Protein Domains/genetics , Xenopus laevis/genetics , Xenopus laevis/metabolism
20.
Sci Total Environ ; 569-570: 880-887, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27378152

ABSTRACT

Fipronil is a phenylpyrazole insecticide that is widely used in residential and agricultural settings to control ants, roaches, termites, and other pests. Fipronil and its transformation products have been found in a variety of environmental matrices, but the source[s] which makes the greatest contribution to fipronil in surface water has yet to be determined. A sampling effort designed to prioritize known fipronil inputs (golf courses, residential areas, biosolids application sites and wastewater facilities) was conducted in North Carolina to learn more about the origins of fipronil in surface water. High resolution mass spectrometry (HRMS) analysis indicated that fipronil and its known derivatives were routinely present in all samples, but concentrations were substantially elevated near wastewater treatment plant outfalls (range 10-500ng/L combined), suggesting that they predominate as environmental sources. Corresponding recycled wastewater samples, which were treated with NaOCl for disinfection, showed disappearance of fipronil and all known degradates. HRMS and nuclear magnetic resonance (NMR) analysis techniques were used to determine that all fipronil-related compounds are oxidized to a previously unidentified fipronil sulfone chloramine species in recycled wastewater. The implications of the presence of a new fipronil-related compound in recycled wastewater need to be considered.


Subject(s)
Insecticides/analysis , Pyrazoles/analysis , Wastewater/analysis , Water Pollutants, Chemical/analysis , Conservation of Water Resources , Environmental Monitoring , Insecticides/chemistry , Magnetic Resonance Spectroscopy , Mass Spectrometry , North Carolina , Pyrazoles/chemistry , Recycling , Water Pollutants, Chemical/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL