Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 69
Filter
Add more filters










Publication year range
1.
Cancer Rep (Hoboken) ; 7(4): e2074, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38627904

ABSTRACT

BACKGROUND: Iatrogenesis is an inevitable global threat to healthcare that drastically increases morbidity and mortality. Cancer is a fatal pathological condition that affects people of different ages, sexes, and races around the world. In addition to the detrimental cancer pathology, one of the most common contraindications and challenges observed in cancer patients is severe adverse drug effects and hypersensitivity reactions induced by chemotherapy. Chemotherapy-induced cognitive neurotoxicity is clinically referred to as Chemotherapy-induced cognitive impairment (CICI), chemobrain, or chemofog. In addition to CICI, chemotherapy also causes neuropsychiatric issues, mental disorders, hyperarousal states, and movement disorders. A synergistic chemotherapy regimen of Doxorubicin (Anthracycline-DOX) and Cyclophosphamide (Alkylating Cytophosphane-CPS) is indicated for the management of various cancers (breast cancer, lymphoma, and leukemia). Nevertheless, there are limited research studies on Doxorubicin and Cyclophosphamide's pharmacodynamic and toxicological effects on dopaminergic neuronal function. AIM: This study evaluated the dopaminergic neurotoxic effects of Doxorubicin and Cyclophosphamide. METHODS AND RESULTS: Doxorubicin and Cyclophosphamide were incubated with dopaminergic (N27) neurons. Neuronal viability was assessed using an MTT assay. The effect of Doxorubicin and Cyclophosphamide on various prooxidants, antioxidants, mitochondrial Complex-I & IV activities, and BAX expression were evaluated by Spectroscopic, Fluorometric, and RT-PCR methods, respectively. Prism-V software (La Jolla, CA, USA) was used for statistical analysis. Chemotherapeutics dose-dependently inhibited the proliferation of the dopaminergic neurons. The dopaminergic neurotoxic mechanism of Doxorubicin and Cyclophosphamide was attributed to a significant increase in prooxidants, a decrease in antioxidants, and augmented apoptosis without affecting mitochondrial function. CONCLUSION: This is one of the first reports that reveal Doxorubicin and Cyclophosphamide induce significant dopaminergic neurotoxicity. Thus, Chemotherapy-induced adverse drug reaction issues substantially persist during and after treatment and sometimes never be completely resolved clinically. Consequently, failure to adopt adequate patient care measures for cancer patients treated with certain chemotherapeutics might substantially raise the incidence of numerous movement disorders.


Subject(s)
Breast Neoplasms , Drug-Related Side Effects and Adverse Reactions , Movement Disorders , Humans , Female , Cyclophosphamide/adverse effects , Anthracyclines/therapeutic use , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Antibiotics, Antineoplastic , Doxorubicin/pharmacology , Breast Neoplasms/pathology , Movement Disorders/drug therapy
2.
Life Sci ; 326: 121752, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37172818

ABSTRACT

Bisphenol-S (BPS) is a current substitute for Bisphenol-A (BPA) in various commercial products (paper, plastics, protective can-coatings, etc.) used by all age groups globally. The current literature indicates that a drastic surge in pro-oxidants, pro-apoptotic, and pro-inflammatory biomarkers in combination with diminished mitochondrial activity can potentially decrease hepatic function leading to morbidity and mortality. Consequently, there are increasing public health concerns that substantial Bisphenol-mediated effects may impact hepatocellular functions, particularly in newborns exposed to BPA and BPS postnatally. However, the acute postnatal impact of BPA and BPS and the molecular mechanisms affecting hepatocellular functions are unknown. Therefore, the current study investigated the acute postnatal effect of BPA and BPS on the biomarkers of hepatocellular functions, including oxidative stress, inflammation, apoptosis, and mitochondrial activity in male Long-Evans rats. BPA and BPS (5 and 20 microgram/Liter (µg/L) of drinking water) were administered to 21-day-old male rats for 14 days. BPS had no significant effect on apoptosis, inflammation, and mitochondrial function but significantly reduced the reactive oxygen species (51-60 %, **p < 0.01) and nitrite content (36 %, *p < 0.05), exhibiting hepatoprotective effects. As expected, based on the current scientific literature, BPA induced significant hepatoxicity, as seen by significant glutathione depletion (50 %, *p < 0.05). The in-silico analysis indicated that BPS is effectively absorbed in the gastrointestinal tract without crossing the blood-brain barrier (whereas BPA crosses the blood-brain barrier) and is not a substrate of p-Glycoprotein and Cytochrome P450 enzymes. Thus, the current in-silico and in vivo findings revealed that acute postnatal exposure to BPS had no significant hepatotoxicity.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Rats , Male , Animals , Rats, Long-Evans , Reactive Oxygen Species , Benzhydryl Compounds/toxicity , Inflammation
3.
Curr Drug Saf ; 18(3): 276-283, 2023.
Article in English | MEDLINE | ID: mdl-35593332

ABSTRACT

BACKGROUND: COVID-19 and tuberculosis (TB) are infectious diseases that predominantly affect the respiratory system with common symptoms, such as cough, fever, and shortness of breath, making them dual burdens. METHODS: This review will discuss the characteristics of the coexistence of TB and new infectious illnesses to provide a framework for addressing the current epidemic. Currently, there are no clear and significant data on COVID-19 infection in TB patients, they may not respond appropriately to drug therapy and may have worse treatment outcomes, especially if their TB treatment is interrupted. Due to emergence, measurements should be taken to minimize TB and COVID-19 transmission in communal settings and health care institutions were created. For both TB and COVID-19, accurate diagnostic testing and well-designed, and established therapeutic strategies are required for effective treatment. RESULTS: Several health care organizations and networks have specimen transit methods that can be utilized to diagnose and monitor the etiology and progression of COVID 19 and perform contact tracing in developed and underdeveloped nations. Furthermore, patients and health care programs could benefit from increased use of digital health technology, which could improve communication, counseling, treatment, and information management, along with other capabilities to improve health care. CONCLUSION: Patients with COVID-19 pulmonary/respiratory problems may seek treatment from respiratory physicians, pulmonologists, TB experts, and even primary health care workers. To have prophylactic and therapeutic strategies against COVID-19, TB patients should take the appropriate health care measures recommended by health care professionals/government officials and maintain their TB therapy as indicated.


Subject(s)
COVID-19 , Tuberculosis , Humans , Tuberculosis/diagnosis , Tuberculosis/drug therapy , Tuberculosis/epidemiology , Developing Countries , Health Personnel
4.
Diab Vasc Dis Res ; 19(3): 14791641221095091, 2022.
Article in English | MEDLINE | ID: mdl-35695412

ABSTRACT

The goal of this study was to analyze the effect of COVID-19 drugs and biologicals on hyperglycemia. A literature search with key terms, such as "COVID-19 drugs and hyperglycemia" and "COVID-19 vaccines and hyperglycemia," was conducted using PubMed through September 2021. The CDC data were referenced for current COVID-19 profile and statistics. The NIH COVID-19 guidelines were referenced for updated treatment recommendations. Micromedex and UpToDate were used for drug and disease information. Current results suggested that corticosteroids (dexamethasone), remdesivir and antivirals (lopinavir and ritonavir) all have the potential to significantly raise blood glucose levels putting patients at elevated risk for severe complications. In contrary, hydroxychloroquine is associated with hypoglycemia, and tocilizumab decreases inflammation which is associated with improving glucose levels. Other anti-cytokine bioactive molecules are correlated with lower blood glucose in patients with and without diabetes mellitus. Ivermectin, used for mild COVID-19 disease, possesses the potential for lowering blood glucose. Covishield, Pfizer-BioNTech, and Moderna have all been associated with hyperglycemia after the first dose. Individualized /personalized patient care is required for diabetic mellitus patients with COVID-19 infection. Improper drug therapy aggravates hyperglycemic conditions and other comorbid conditions, leading to increased morbidity and mortality.


Subject(s)
COVID-19 , Diabetes Mellitus , Hyperglycemia , Blood Glucose , COVID-19 Vaccines , ChAdOx1 nCoV-19 , Diabetes Mellitus/diagnosis , Diabetes Mellitus/drug therapy , Diabetes Mellitus/epidemiology , Humans , Hyperglycemia/chemically induced , Hyperglycemia/diagnosis , Hyperglycemia/drug therapy , SARS-CoV-2
5.
Rapid Commun Mass Spectrom ; 34(4): e8593, 2020 Feb 28.
Article in English | MEDLINE | ID: mdl-31518025

ABSTRACT

RATIONALE: The halogenated derivatives of N-(2-methoxy)benzyl-2,5-dimethoxyphenethylamine (25-NBOMe) such as the 4-bromo analogue (25B-NBOMe) represent a new class of hallucinogenic or psychedelic drugs. The purpose of this study was to determine the role of the electron-donating groups (halogen and dimethoxy) in the pathway of decomposition for the distonic molecular radical cation in the electron ionization mass spectrometry (EI-MS) process of the trifluoroacetamide (TFA) derivatives. METHODS: The systematic removal of substituents from the 4-halogenated 2,5-dimethoxyphenethylamine portion of the N-dimethoxybenzyl NBOMe analogues allowed an evaluation of structural effects on the formation of major fragment ions in the EI-MS of the TFA derivatives. All six regioisomeric dimethoxybenzyl-substituted analogues (2,3-, 2,4-, 2,5-, 2,6-, 3,4- and 3,5-dimethoxy) for the four series of phenethyl aromatic ring substitution patterns were prepared, derivatized and analyzed via gas chromatography coupled with EI-MS. RESULTS: The analogues yield two unique radical cation fragments from the decomposition of the common distonic molecular radical cation. The substituted phenylethene radical cation (m/z 164) is the base peak or second most abundant ion in all six TFA-2,5-dimethoxyphenethylamine isomers. The dimethoxybenzyltrifloroacetamide radical cation (m/z 263) is the base peak or second most abundant ion in the 2- and 3-monomethoxyphenethylamine isomers. However, the 2- and 3-methoxyphenylethene radical cation (m/z 134) is among the five most abundant ions for each of these twelve isomers. Only one isomer in the phenethylamine series yields the corresponding unsubstituted phenylethene radical cation at m/z 104. CONCLUSIONS: The decomposition of the hydrogen-rearranged distonic molecular radical cation favors formation of the dimethoxybenzyltrifloroacetamide (m/z 263) species for the less electron-rich phenethyl aromatic rings. The addition of electron-donating groups to the aromatic ring of the phenethyl group as in the NBOMe-type molecules shifts the decomposition of the common distonic molecular radical cation to favor the formation of the electron-rich substituted phenylethene radical cation.


Subject(s)
Anisoles/chemistry , Hallucinogens/chemistry , Phenethylamines/chemistry , Isomerism , Mass Spectrometry , Molecular Structure
6.
Appl Spectrosc ; 73(4): 433-443, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30347999

ABSTRACT

The analytical differentiation of the indole ring regioisomeric chloro-1- n-pentyl-3-(1-naphthoyl)-indoles is described in this report. The regioisomeric chloroindole precursor compounds, N- n-pentyl chloroindole synthetic intermediates, and the target chloro-substituted naphthoylindoles showed the equivalent gas chromatographic elution order based on the position of chlorine substitution on the indole ring. The regioisomeric chloro-1- n-pentyl-3-(1-naphthoyl)-indoles yield electron ionization mass spectra having equivalent major fragments resulting from cleavage of the groups attached to the central indole nucleus. Fragment ions occur at m/z 127 and 155 for the naphthyl and naphthoyl cations common to all indoles having the naphthoyl group substituted at the indole-3 position. Fragments resulting from the loss of the naphthoyl and/or n-pentyl groups from the molecular radical cation yield the cations at m/z 318, 304, 248, and 178. The characteristic (M-17)+ fragment ion at m/z 358 resulting from the loss of OH radical is significant in the mass spectra of all these compounds with 1-naphthoyl groups substituted at the indole-3 position. The vapor phase infrared spectra provide a number of characteristic absorption bands to identify the individual isomers.

7.
Forensic Sci Res ; 3(2): 161-169, 2018.
Article in English | MEDLINE | ID: mdl-30483665

ABSTRACT

A series of N,N-disubstituted piperazines were synthesized containing the structural elements of both methylenedioxybenzylpiperazine (MDBP) and trifluoromethylphenylpiperazine (TFMPP) in a single molecule. These six potential designer drug molecules having a regioisomeric relationship were compared in gas chromatography-mass spectrometry (GC-MS), gas chromatography-infrared spectroscopy and serotonin receptor affinity studies. These compounds were separated by capillary gas chromatography on an Rxi®-17Sil MS stationary phase film and the elution order appears to be determined by the position of aromatic ring substitution. The majority of electron ionization mass spectral fragment ions occur via processes initiated by one of the two nitrogen atoms of the piperazine ring. The major electron ionization mass spectrometry (EI-MS) fragment ions observed in all six of these regioisomeric substances occur at m/z = 364, 229, 163 and 135. The relative intensity of the various fragment ions is also equivalent in each of the six EI-MS spectra. The vapour phase infrared spectra provide a number of absorption bands to differentiate among the six individual compounds on this regioisomeric set. Thus, the mass spectra place these compounds into a single group and the vapour phase infrared spectra differentiate among the six regioisomeric possibilities. All of the TFMPP-MDBP regioisomers displayed significant binding to 5-HT2B receptors and in contrast to 3-TFMPP, most of these TFMPP-MDBP isomers did not show significant binding at 5-HT1 receptor subtypes. Only the 3-TFMPP-3,4-MDBP (Compound 5) isomer displayed affinity comparable to 3-TFMPP at 5-HT1A receptors (Ki = 188 nmol/L).

8.
Life Sci ; 209: 357-369, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-30067941

ABSTRACT

Designer drugs are synthetically formulated to mimic the psychostimulatory effects of an original controlled/illegal drug of abuse. Designer drugs have similar chemical structure or functional analog as compared to existing controlled psychostimulatory drugs. There is a substantial rise in the production and use of designer drugs globally. Piperazine designer drugs were synthesized as an alternative to MDMA and have shown to induce numerous toxic effects leading to huge health, safety, law enforcement & monetary problems, and lethality. Currently, there are very few studies on the dopaminergic neurotoxicity of 1-(3-trifluoromethylphenyl) piperazine (3-TFMPP) and its derivatives (structural congeners). N27 rat dopaminergic neurons are valid cells to investigate the neurotoxic effects and establish the neurotoxic mechanisms of various substances. In the current study, we studied the time and dose-dependent neurotoxicity mechanisms of dopaminergic neurotoxicity of 3-TFMPP (parent compound) and its derivatives (2-TFMPP, 4-TFMPP). TFMPP derivatives-induced significant neurotoxicity (induced dopaminergic neuronal death. TFMPP derivatives-induced oxidative stress, mitochondrial dysfunction, apoptosis and decreased tyrosine hydroxylase expression. If the use of designer drugs are not strictly regulated and restricted around the world, this can lead to numerous central and peripheral disorders leading to a liability to the current and future society.


Subject(s)
Apoptosis/drug effects , Dopaminergic Neurons/pathology , Mitochondria/pathology , Neurotoxicity Syndromes/pathology , Oxidative Stress/drug effects , Piperazines/chemistry , Piperazines/toxicity , Animals , Cells, Cultured , Dopamine/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/metabolism , Rats , Serotonin Receptor Agonists/chemistry , Serotonin Receptor Agonists/toxicity , Tyrosine 3-Monooxygenase/metabolism
9.
Biochemistry ; 57(32): 4923-4933, 2018 08 14.
Article in English | MEDLINE | ID: mdl-30063132

ABSTRACT

Tuberculosis represents a significant public health crisis. There is an urgent need for novel molecular scaffolds against this pathogen. We screened a small library of marine-derived compounds against shikimate kinase from Mycobacterium tuberculosis ( MtSK), a promising target for antitubercular drug development. Six manzamines previously shown to be active against M. tuberculosis were characterized as MtSK inhibitors: manzamine A (1), 8-hydroxymanzamine A (2), manzamine E (3), manzamine F (4), 6-deoxymanzamine X (5), and 6-cyclohexamidomanzamine A (6). All six showed mixed noncompetitive inhibition of MtSK. The lowest KI values were obtained for 6 across all MtSK-substrate complexes. Time-dependent analyses revealed two-step, slow-binding inhibition. The behavior of 1 was typical; initial formation of an enzyme-inhibitor complex (EI) obeyed an apparent KI of ∼30 µM with forward ( k5) and reverse ( k6) rate constants for isomerization to an EI* complex of 0.18 and 0.08 min-1, respectively. In contrast, 6 showed a lower KI for the initial encounter complex (∼1.5 µM), substantially faster isomerization to EI* ( k5 = 0.91 min-1), and slower back conversion of EI* to EI ( k6 = 0.04 min-1). Thus, the overall inhibition constants, KI*, for 1 and 6 were 10 and 0.06 µM, respectively. These findings were consistent with docking predictions of a favorable binding mode and a second, less tightly bound pose for 6 at MtSK. Our results suggest that manzamines, in particular 6, constitute a new scaffold from which drug candidates with novel mechanisms of action could be designed for the treatment of tuberculosis by targeting MtSK.


Subject(s)
Mycobacterium tuberculosis/enzymology , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Carbazoles/pharmacology , Enzyme Activation/drug effects , Enzyme Inhibitors/pharmacology , Indole Alkaloids/pharmacology , Kinetics
10.
J Chromatogr Sci ; 56(9): 779-788, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29920587

ABSTRACT

The indole ring regioisomeric methoxy-1-n-pentyl-3-(1-naphthoyl)-indoles represent indole ring-substituted analogs of the synthetic cannabinoid JWH-018. The electron ionization mass spectra show equivalent regioisomeric major fragments resulting from cleavage of the groups attached to the central indole nucleus. The characteristic (M-17)+ fragment ion at m/z 354 resulting from the loss of OH group is significant in the mass spectra of all four compounds. Fragmentation of the naphthoyl and/or pentyl groups yields the cations at m/z 314, 300, 244 and 216. The vapor-phase infrared spectra provide a number of characteristic absorption bands to identify the individual isomers. Gas chromatographic separations on a capillary column containing a film of trifluoropropylmethyl polysiloxane (Rtx-200) provided excellent resolution of these compounds, their precursor indoles and intermediate pentylindoles. The elution order appears related to the degree of crowding of indole ring substituents.


Subject(s)
Cannabinoids/analysis , Designer Drugs/analysis , Gas Chromatography-Mass Spectrometry/methods , Indoles/analysis , Naphthalenes/analysis , Spectrophotometry, Infrared/methods , Cannabinoids/chemistry , Designer Drugs/chemistry , Indoles/chemistry , Isomerism , Naphthalenes/chemistry
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 196: 375-384, 2018 May 05.
Article in English | MEDLINE | ID: mdl-29486418

ABSTRACT

The twelve 1-n-pentyl-2-, 3-, 4-, 5-, 6- and 7-(1- and 2-naphthoyl)-indoles each have the same substituents attached to the indole ring, identical elemental composition (C24H23NO) yielding identical nominal and accurate masses. These twelve isomers cover all possible positions of carbonyl bridge substitution for both indole (positons 2-7) and naphthalene rings (positions 1 and 2). Regioisomeric compounds can represent significant challenges for mass based analytical methods however, infrared spectroscopy is a powerful tool for the identification of positional isomers in organic compounds. The vapor phase infrared spectra of these twelve uniquely similar compounds were evaluated in GC-IR experiments. These spectra show the bridge position on the indole ring is a dominating influence over the carbonyl absorption frequency observed for these compounds. Substitution on the pyrrole moiety of the indole ring yields the lowest CO frequency values for position 2 and 3 giving a narrow range from 1656 to 1654cm-1. Carbonyl absorption frequencies are higher when the naphthoyl group is attached to the benzene portion of the indole ring yielding absorption values from 1674 to 1671cm-1. The aliphatic stretching bands in the 2900cm-1 region yield a consistent triplet pattern because the N-alkyl substituent tail group remains unchanged for all twelve regioisomers. The asymmetric CH2 stretch is the most intense of these three bands. Changes in positional bonding for both the indole and naphthalene ring systems results in unique patterns within the 700 wavenumber out-of-plane region and these absorption bands are different for all 12 regioisomers.


Subject(s)
Cannabinoids/analysis , Designer Drugs/analysis , Spectrophotometry, Infrared/methods , Cannabinoids/chemistry , Designer Drugs/chemistry , Gases/analysis , Gases/chemistry , Indoles/analysis , Indoles/chemistry , Models, Molecular , Stereoisomerism
12.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1077-1078: 77-84, 2018 Mar 01.
Article in English | MEDLINE | ID: mdl-29413581

ABSTRACT

The six 1-n-pentyl-2-, 3-, 4-, 5-, 6- and 7-(2-naphthoyl)-indoles each have the same substituents attached to the indole ring, identical elemental composition (C24H23NO) yielding identical nominal and accurate masses. The electron ionization mass spectra of the 2-naphthoyl substituted isomers share equivalent major fragment ions resulting from cleavage of the groups attached to the central indole nucleus with some differences in relative abundances. These six regioisomers were successfully resolved on an Rtx-5 and Rxi-17Sil MS stationary phases and the molecules having both substituent groups on the same side of the indole ring (1,2- and 1,7-substituents) show the least retention. The more linear molecules have higher relative retention properties. A comparison of the GC properties of the 1-naphthoyl- and 2-naphthoyl groups attached at identical positions of the indole ring showed higher GC retention for the 2-naphthoyl substituted isomer in all cases evaluated. The amide inverse isomers (1-naphthoyl-3-n-pentylindoles) were separated from the 1-n-pentyl-3-naphthoyl-indoles on an Rtx-200 stationary phase. The two inverse amide isomers having the 1- and 2-naphthoyl groups substituted at the 1-position of the indole ring elute before either of the N-alkyl-indole isomers having the 1- and 2-naphthoyl groups substituted at the 3-position of the indole ring. The amide inverse isomers yield EI mass spectra easily distinguishing these amides from the ketone isomers having the naphthoyl groups at the indole 3-position.


Subject(s)
Cannabinoids/analysis , Cannabinoids/chemistry , Indoles/analysis , Indoles/chemistry , Naphthalenes/analysis , Naphthalenes/chemistry , Gas Chromatography-Mass Spectrometry , Isomerism , Models, Molecular
13.
Toxicol Mech Methods ; 28(3): 177-186, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28874085

ABSTRACT

Benzylpiperazine has been designated as Schedule I substance under the Controlled Substances Act by Drug Enforcement Administration. Benzylpiperazine is a piperazine derivative, elevates both dopamine and serotonin extracellular levels producing stimulatory and hallucinogenic effects, respectively, similar to methylenedioxymethamphetamine (MDMA). However, the comparative neurotoxic effects of Piperazine derivatives (benzylpiperazine and benzoylpiperazine) have not been elucidated. Here, piperazine derivatives (benzylpiperazine and benzoylpiperazine) were synthesized in our lab and the mechanisms of cellular-based neurotoxicity were elucidated in a dopaminergic human neuroblastoma cell line (SH-SY5Y). We evaluated the in vitro effects of benzylpiperazine and benzoylpiperazine on the generation of reactive oxygen species, lipid peroxidation, mitochondrial complex-I activity, catalase activity, superoxide dismutase activity, glutathione content, Bax, caspase-3, Bcl-2 and tyrosine hydroxylase expression. Benzylpiperazine and benzoylpiperazine induced oxidative stress, inhibited mitochondrial functions and stimulated apoptosis. This study provides a germinal assessment of the neurotoxic mechanisms induced by piperazine derivatives that lead to neuronal cell death.


Subject(s)
Apoptosis/drug effects , Dopamine Agonists/toxicity , Dopaminergic Neurons/drug effects , Hallucinogens/toxicity , Oxidative Stress/drug effects , Piperazines/toxicity , Apoptosis Regulatory Proteins/agonists , Apoptosis Regulatory Proteins/antagonists & inhibitors , Apoptosis Regulatory Proteins/metabolism , Biomarkers/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Designer Drugs/chemistry , Designer Drugs/toxicity , Dopamine Agonists/chemistry , Dopaminergic Neurons/cytology , Dopaminergic Neurons/metabolism , Electron Transport Complex I/antagonists & inhibitors , Electron Transport Complex I/metabolism , Hallucinogens/chemistry , Humans , Lipid Peroxidation/drug effects , Mitochondria/drug effects , Mitochondria/enzymology , Mitochondria/metabolism , Molecular Structure , Nerve Tissue Proteins/agonists , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/metabolism , Osmolar Concentration , Piperazines/chemistry , Reactive Oxygen Species/agonists , Reactive Oxygen Species/metabolism
14.
Talanta ; 171: 220-228, 2017 Aug 15.
Article in English | MEDLINE | ID: mdl-28551132

ABSTRACT

Multiple and complementary analytical methods are often necessary for the identification of a specific compound from a series of closely related structural isomers. Gas chromatography-mass spectrometry (GC-MS), gas chromatography-product ion mass spectrometry (GC-MS/MS) and gas chromatography-infrared spectroscopy (GC-IR) were used to differentiate between the six dimethoxypyrrovalerone (DMPV) regioisomers. The six regioisomeric aminoketones were separated on a 50% phenyl stationary phase and the elution order is related to the positioning of substituents on the aromatic ring. These six DMPV regioisomers yield essentially identical mass spectral data in both chemical ionization (CI-MS) and electron ionization (EI-MS) spectra as well as identical product ion MS/MS spectra of the iminium cation base peak (m/z 126). These various mass spectral techniques provide data to identify all major structural features of these molecules except the dimethoxy substitution pattern of the aromatic ring. The region of the vapor phase infrared spectra between 1600cm-1 and 1000cm-1 provides a significant number of unique absorption bands characteristic of each individual DMPV regioisomer.

15.
Article in English | MEDLINE | ID: mdl-28199890

ABSTRACT

The desoxy phenethylamine analogues in this study represent a combination of alkyl side-chain and cyclic amines (azetidine, pyrrolidine, piperidine and azepane) to yield a set of molecules of identical elemental composition as well as major mass spectral fragment ions (base peaks) of identical elemental composition. These desoxy phenethylamine analogues of the aminoketone designer drug, 3,4-methylenedioxy-pyrrovalerone (MDPV) related to the natural product cathinone were prepared from piperonal (3,4-methylenedioxybenzaldehyde) via the intermediate precursor ketones. The aminoketones and the desoxy phenethylamine regioisomers were each separated in capillary gas chromatography experiments using an Rxi®-17Sil MS stationary phase with the aminoketones showing greater retention than the corresponding desoxyamines.


Subject(s)
Alkaloids/chemistry , Benzodioxoles/chemistry , Central Nervous System Stimulants/chemistry , Designer Drugs/chemistry , Pyrrolidines/chemistry , Amines/chemistry , Gas Chromatography-Mass Spectrometry/methods , Spectrophotometry, Infrared/methods , Stereoisomerism , Tandem Mass Spectrometry/methods , Synthetic Cathinone
16.
J Chromatogr Sci ; 55(2): 99-108, 2017 02.
Article in English | MEDLINE | ID: mdl-27733481

ABSTRACT

A combination of GC-MS, MS/MS and GC-IR techniques were used to characterize the ring substitution pattern, the alkyl side-chain and the cyclic tertiary amine portions of a series of six homologous and regioisomeric methylenedioxyphenyl-aminoketones related to the designer drug, 3,4-methylenedioxypyrovalerone (MDPV). Chromatographic retention increases with the hydrocarbon content of the alkyl side-chain and the 3,4-methylenedioxy substitution pattern shows higher retention than the corresponding 2,3-methylenedioxy isomer. The aminoketones show major peaks in their mass spectra corresponding to the homologous series of iminium cation fragments from the loss of the regioisomeric methylenedioxybenzoyl radical species. Deuterium labeling experiments confirm the iminium cation base peaks to undergo the loss of a hydrocarbon molecular fragment to yield product ions characteristic of the side-chain and pyrrolidine ring portion of the parent cathinone derivative. The mass spectra for the designer drug MDPV and its regioisomeric 2,3-methylenedioxy isomer show equivalent fragments including the base peak at m/z 126 and major product ion fragments at m/z 84. The ring substitution pattern for these two isomers was differentiated by characteristic absorption bands in the 1,500 -1,200 cm-1 range in their vapor phase IR. These characteristic bands can also be used to identify the aromatic ring substitution pattern in the regioisomeric precursor ketones.


Subject(s)
Benzodioxoles/chemistry , Gas Chromatography-Mass Spectrometry/methods , Ketones/chemistry , Pyrrolidines/chemistry , Tandem Mass Spectrometry/methods , Benzodioxoles/analysis , Ketones/analysis , Pyrrolidines/analysis , Stereoisomerism , Synthetic Cathinone
17.
Rapid Commun Mass Spectrom ; 30(6): 763-72, 2016 Mar 30.
Article in English | MEDLINE | ID: mdl-26864528

ABSTRACT

RATIONALE: A number of synthetic cathinones (aminoketones, 'bath salts') are tertiary amines containing a cyclic amino group, most commonly pyrrolidine. These totally synthetic compounds can be prepared in a number of regioisomeric designer modifications and many of these can yield isomeric major fragment ions in electron ionization mass spectrometry (EI-MS). METHODS: A series of regioisomeric cyclic tertiary amines were prepared and evaluated in EI-MS and MS/MS product ion experiments. The cyclic amines azetidine, pyrrolidine, piperidine and azepane were incorporated into a series of aminoketones related to the cathinone derivative drug of abuse known as MDPV. Deuterium labeling in both the cyclic amine and alkyl side chain allowed for the confirmation of the structure for the major product ions formed from the EI-MS iminium cation base peaks. RESULTS: These iminium cation base peaks show characteristic product ion spectra which allow differentiation of the ring and side-chain portions of the structure. The small alkyl side chains favor ring fragmentation in the formation of the major product ions. The higher side-chain homologues appear to promote product ion formation by side-chain fragmentation. Both side-chain and ring fragmentation yield a mixture of product ions in the piperidine and azepane series. CONCLUSIONS: Product ion fragmentation provides useful data for differentiation of cyclic tertiary amine iminium cations from cathinone derivative drugs of abuse. Regioisomeric iminium cations of equal mass yield characteristic product ions for the alkyl side-chain homologues of azetidine, pyrrolidine, piperidine and azepane cyclic amines.


Subject(s)
Alkaloids/analysis , Amines/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Tandem Mass Spectrometry/methods , Alkaloids/chemistry , Amines/analysis , Ketones/analysis , Ketones/chemistry
18.
Rapid Commun Mass Spectrom ; 30(14): 1713-1721, 2016 07 30.
Article in English | MEDLINE | ID: mdl-28328032

ABSTRACT

RATIONALE: Precursor materials are available to prepare aminoketone drugs containing regioisomeric propyl and isopropyl side-chain groups related to the drug alpha-pyrrovalerone (Flakka) and MDPV (3,4-methylenedioxypyrrovalerone). These compounds yield equivalent regioisomeric iminium cation base peaks in electron ionization mass spectrometry (EI-MS). METHODS: The propyl and isopropyl side-chain groups related to alpha-pyrrovalerone and MDPV were prepared and evaluated in EI-MS and tandem mass spectrometry (MS/MS) product ion experiments. Deuterium labeling in both the pyrrolidine and alkyl side-chain groups allowed for the confirmation of the structures for the major product ions formed from the regioisomeric EI-MS iminium cation base peaks. RESULTS: These iminium cation base peaks show characteristic product ion spectra which allow differentiation of the side-chain propyl and isopropyl groups in the structure. The n-propyl side chain containing iminium cation base peak (m/z 126) in the EI-MS spectrum yields a major product ion at m/z 84 while the regioisomeric m/z 126 base peak for the isopropyl side chain yields a characteristic product ion at m/z 70. Deuterium labeling in both the pyrrolidine ring and the alkyl side chain confirmed the process for the formation of these major product ions. CONCLUSIONS: Product ion fragmentation provides useful data for differentiation of n-propyl and isopropyl side-chain iminium cations from cathinone derivative drugs of abuse. Regioisomeric n-propyl and isopropyl iminium cations of equal mass yield characteristic product ions identifying the alkyl side-chain regioisomers in the pyrrolidine cathinone derivatives. Copyright © 2016 John Wiley & Sons, Ltd.


Subject(s)
Alkaloids/chemistry , Tandem Mass Spectrometry , Cations , Gas Chromatography-Mass Spectrometry
19.
Rapid Commun Mass Spectrom ; 29(9): 871-7, 2015 May 15.
Article in English | MEDLINE | ID: mdl-26377015

ABSTRACT

RATIONALE: A number of synthetic cannabinoids such as the 1-alkyl-3-acylindoles are the target of significant designer drug activity. One of the first waves of these compounds identified in clandestine samples was 1-n-pentyl-3-(1-naphthoyl)indole, JWH-018. These totally synthetic molecules can be prepared in a number of regioisomeric forms. METHODS: The electron ionization mass spectrometric (EI-MS) fragmentation of the 1-n-pentyl-3-(1-naphthoyl)indole is compared to its inverse isomer 1-naphthoyl-3-n-pentylindole. These two substances are directly available from indole using identical precursor reagents and similar reaction conditions. Stable isotope deuterium labeling of the three major regions of the JWH-018 molecule allows confirmation of the structures of the major fragment ions. The spectra for the 1-n-pentyl-3-(1-naphthoyl)-d(5) -indole, 1-n-pentyl-3-(1-d(7) -naphthoyl)indole and 1-d(11) -n-pentyl-3-(1-naphthoyl)indole provide significant assistance in elucidating the structures for the major fragment ions in JWH-018. RESULTS: The EI mass spectra for these isomers show a number of unique ions which allow for the differentiation of the 1-alkyl-3-acylindole compounds from the inverse regioisomeric 1-acyl-3-alkylindoles. The fragment ion [M-17](+) at m/z 324 for JWH-018 was formed by the elimination of a hydroxyl radical and the spectra of the three deuterium-labeled derivatives indicated the loss of hydrogen from the naphthalene ring. Further structural analogues suggest the hydrogen to come from the 8-position of the naphthalene ring. CONCLUSIONS: The three deuterium-labeled analogues provide significant assistance in confirming the structures for the major fragment ions in the mass spectrum of the traditional synthetic cannabinoid compound, 1-n-pentyl-3-(1-naphthoyl)indole, JWH-018. The 1-naphthoyl-3-n-pentylindole inverse regioisomer can be easily differentiated from the traditional synthetic cannabinoid compound.


Subject(s)
Cannabinoids/chemistry , Designer Drugs/chemistry , Indoles/chemistry , Naphthalenes/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Deuterium , Gas Chromatography-Mass Spectrometry/methods , Isomerism
20.
Sci Justice ; 55(5): 291-8, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26385710

ABSTRACT

The regioisomeric 1-n-pentyl-3-(methoxybenzoyl)indoles and the 1-n-pentyl-3-(methylbenzoyl)indoles represent potential designer modifications in the synthetic cannabinoid drug category. These six compounds were prepared by a two-step synthetic method. The analytical properties and methods of regioisomeric differentiation were developed in this study. The molecular ion represents the base peak in the EI mass spectra for most of the compounds in this group. The meta- and para-isomers in each series display fragment ions at equivalent masses with some differences in relative abundance of these ions. The ortho-substituted isomers for both the methoxybenzoyl and methylbenzoyl series show a unique fragment ion occurring at M-17. Deuterium labeling for the methoxy group in the ortho-methoxybenzoyl isomer (ortho-OCD3) confirmed the ortho-substituent as the source of the hydrogen in OH (M-17) elimination. The two sets of regioisomers were well resolved by capillary gas chromatography and the elution order reflected increasing molecular linearity. In both sets of compounds the ortho-isomer eluted first and the para-isomer showed the highest retention time. The HPLC separation showed the ortho-isomer eluting first and the meta-isomer eluting last in both sets of regioisomers.


Subject(s)
Cannabinoids/chemistry , Gas Chromatography-Mass Spectrometry , Humans , Isomerism , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...