Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Auton Neurosci ; 189: 60-7, 2015 May.
Article in English | MEDLINE | ID: mdl-25704391

ABSTRACT

BACKGROUND: The superior hypogastric plexus (SHP) is an autonomic plexus, located ventrally to the abdominal aorta and its bifurcation, innervating pelvic viscera. It is classically described as being composed of merely sympathetic fibres. However, post-operative complications after surgery damaging the peri-aortic retroperitoneal compartment suggest the existence of parasympathetic fibres. This immunohistochemical study describes the neuroanatomical composition of the human mature SHP. MATERIAL AND METHODS: Eight pre-determined retroperitoneal localizations including the lumbar splanchnic nerves, the SHP and the HN were studied in four human cadavers. Control tissues (white rami, grey rami, vagus nerve, splanchnic nerves, sympathetic ganglia, sympathetic chain and spinal nerve) were collected to verify the results. All tissues were stained with haematoxylin and eosin and antibodies S100, tyrosine hydroxylase (TH), vasoactive intestinal peptide (VIP) and myelin basic protein (MBP) to identify pre- and postganglionic parasympathetic and sympathetic nerve fibres. RESULTS: All tissues comprising the SHP and hypogastric nerves (HN) showed isolated expression of TH, VIP and MBP, revealing the presence of three types of fibres: postganglionic adrenergic sympathetic fibres marked by TH, unmyelinated VIP-positive fibres and myelinated preganglionic fibres marked by MBP. Analysis of control tissues confirmed that TH, VIP and MBP were well usable to interpret the neurochemical composition of the SHP and HN. CONCLUSION: The human SHP and HN contain sympathetic and most likely postganglionic parasympathetic fibres. The origin of these fibres is still to be elucidated, however surgical damage in the peri-aortic retroperitoneal compartment may cause pelvic organ dysfunction related to both parasympathetic and sympathetic denervation.


Subject(s)
Hypogastric Plexus/anatomy & histology , Parasympathetic Nervous System/anatomy & histology , Sympathetic Nervous System/anatomy & histology , Humans , Hypogastric Plexus/metabolism , Immunohistochemistry , Lumbar Vertebrae , Myelin Basic Protein/metabolism , Parasympathetic Nervous System/metabolism , S100 Proteins/metabolism , Splanchnic Nerves/anatomy & histology , Splanchnic Nerves/metabolism , Sympathetic Nervous System/metabolism , Tyrosine 3-Monooxygenase/metabolism , Vasoactive Intestinal Peptide/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...