Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 11(12)2021 Dec 19.
Article in English | MEDLINE | ID: mdl-34947793

ABSTRACT

Gravitational waves are detected using resonant optical cavity interferometers. The mirror coatings' inherent thermal noise and photon scattering limit sensitivity. Crystals within the reflective coating may be responsible for either or both noise sources. In this study, we explored crystallization reduction in zirconia through nano-layering with silica. We used X-ray diffraction (XRD) to monitor crystal growth between successive annealing cycles. We observed crystal formation at higher temperatures in thinner zirconia layers, indicating that silica is a successful inhibitor of crystal growth. However, the thinnest barriers break down at high temperatures, thus allowing crystal growth beyond each nano-layer. In addition, in samples with thicker zirconia layers, we observe that crystallization saturates with a significant portion of amorphous material remaining.

2.
Genome Announc ; 3(2)2015 Apr 02.
Article in English | MEDLINE | ID: mdl-25838488

ABSTRACT

Here, we report the genome sequence of Magnetospirillum magnetotacticum strain MS-1, which consists of of 36 contigs and 4,136 protein-coding genes.

3.
Nature ; 515(7527): 355-64, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-25409824

ABSTRACT

The laboratory mouse shares the majority of its protein-coding genes with humans, making it the premier model organism in biomedical research, yet the two mammals differ in significant ways. To gain greater insights into both shared and species-specific transcriptional and cellular regulatory programs in the mouse, the Mouse ENCODE Consortium has mapped transcription, DNase I hypersensitivity, transcription factor binding, chromatin modifications and replication domains throughout the mouse genome in diverse cell and tissue types. By comparing with the human genome, we not only confirm substantial conservation in the newly annotated potential functional sequences, but also find a large degree of divergence of sequences involved in transcriptional regulation, chromatin state and higher order chromatin organization. Our results illuminate the wide range of evolutionary forces acting on genes and their regulatory regions, and provide a general resource for research into mammalian biology and mechanisms of human diseases.


Subject(s)
Genome/genetics , Genomics , Mice/genetics , Molecular Sequence Annotation , Animals , Cell Lineage/genetics , Chromatin/genetics , Chromatin/metabolism , Conserved Sequence/genetics , DNA Replication/genetics , Deoxyribonuclease I/metabolism , Gene Expression Regulation/genetics , Gene Regulatory Networks/genetics , Genome-Wide Association Study , Humans , RNA/genetics , Regulatory Sequences, Nucleic Acid/genetics , Species Specificity , Transcription Factors/metabolism , Transcriptome/genetics
4.
Sci Rep ; 4: 5152, 2014 Jun 12.
Article in English | MEDLINE | ID: mdl-24919486

ABSTRACT

Chromatin immunoprecipitation coupled with DNA sequencing (ChIP-seq) is the major contemporary method for mapping in vivo protein-DNA interactions in the genome. It identifies sites of transcription factor, cofactor and RNA polymerase occupancy, as well as the distribution of histone marks. Consortia such as the ENCyclopedia Of DNA Elements (ENCODE) have produced large datasets using manual protocols. However, future measurements of hundreds of additional factors in many cell types and physiological states call for higher throughput and consistency afforded by automation. Such automation advances, when provided by multiuser facilities, could also improve the quality and efficiency of individual small-scale projects. The immunoprecipitation process has become rate-limiting, and is a source of substantial variability when performed manually. Here we report a fully automated robotic ChIP (R-ChIP) pipeline that allows up to 96 reactions. A second bottleneck is the dearth of renewable ChIP-validated immune reagents, which do not yet exist for most mammalian transcription factors. We used R-ChIP to screen new mouse monoclonal antibodies raised against p300, a histone acetylase, well-known as a marker of active enhancers, for which ChIP-competent monoclonal reagents have been lacking. We identified, validated for ChIP-seq, and made publicly available a monoclonal reagent called ENCITp300-1.


Subject(s)
Antibodies, Monoclonal/metabolism , Chromatin Immunoprecipitation/methods , E1A-Associated p300 Protein/metabolism , Protein Interaction Mapping/methods , Sequence Analysis, DNA/methods , Animals , Automation/methods , Histone Acetyltransferases/metabolism , Histones/metabolism , Mammals , Mice , Robotics , Transcription Factors/metabolism
5.
Genome Res ; 22(9): 1813-31, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22955991

ABSTRACT

Chromatin immunoprecipitation (ChIP) followed by high-throughput DNA sequencing (ChIP-seq) has become a valuable and widely used approach for mapping the genomic location of transcription-factor binding and histone modifications in living cells. Despite its widespread use, there are considerable differences in how these experiments are conducted, how the results are scored and evaluated for quality, and how the data and metadata are archived for public use. These practices affect the quality and utility of any global ChIP experiment. Through our experience in performing ChIP-seq experiments, the ENCODE and modENCODE consortia have developed a set of working standards and guidelines for ChIP experiments that are updated routinely. The current guidelines address antibody validation, experimental replication, sequencing depth, data and metadata reporting, and data quality assessment. We discuss how ChIP quality, assessed in these ways, affects different uses of ChIP-seq data. All data sets used in the analysis have been deposited for public viewing and downloading at the ENCODE (http://encodeproject.org/ENCODE/) and modENCODE (http://www.modencode.org/) portals.


Subject(s)
Chromatin Immunoprecipitation/methods , Databases, Genetic , High-Throughput Nucleotide Sequencing/methods , Animals , Genome/genetics , Genomics/methods , Guidelines as Topic , Histones/metabolism , Humans , Internet , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...