Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 27(6): 8585-8595, 2019 Mar 18.
Article in English | MEDLINE | ID: mdl-31052673

ABSTRACT

We demonstrate operation of a cladding-pumped hybrid ytterbium-doped HOM fiber amplifier and reconversion of the HOM output to Gaussian-like beam by using an axicon based reconversion system. The amplifier was constructed by concatenating single-mode and HOM ytterbium-doped double clad fibers, and was excited by a common multimode pump source. A continuous wave (cw) input signal of 97mW was amplified to 100W at the amplifier output, which yielded a gain of more than 30dB. The LP0,10 output of the HOM amplifier could be converted to a Gaussian-like beam with 67% conversion efficiency. We present, both analytically and numerically, the effects of scaling the beam size on axicon's apex angle, and how shape imperfections affect the mode converter's performance.

2.
Nat Commun ; 5: 5085, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25349180

ABSTRACT

Hollow-core fibre (HCF) is a powerful technology platform offering breakthrough performance improvements in sensing, communications, higher-power pulse delivery and other applications. Free from the usual constraints on what materials can guide light, it promises qualitatively new and ideal operating regimes: precision signals transmitted free of nonlinearities, sensors that guide light directly in the samples they are meant to probe and so on. However, these fibres have not been widely adopted, largely because uncontrolled coupling between transverse and polarization modes overshadows their benefits. To deliver on their promises, HCFs must retain their unique properties while achieving the modal and polarization control that are essential for their most compelling applications. Here we present the first single-moded, polarization-maintaining HCF with large core size needed for loss scaling. Single modedness is achieved using a novel scheme for resonantly coupling out unwanted modes, whereas birefringence is engineered by fabricating an asymmetrical glass web surrounding the core.

3.
Opt Express ; 21(5): 6233-42, 2013 Mar 11.
Article in English | MEDLINE | ID: mdl-23482192

ABSTRACT

Hollow-core fibers (HCFs) are a revolution in light guidance with enormous potential. They promise lower loss than any other waveguide, but have not yet achieved this potential because of a tradeoff between loss and single-moded operation. This paper demonstrates progress on a strategy to beat this tradeoff: we measure the first hollow-core fiber employing Perturbed Resonance for Improved Single Modedness (PRISM), where unwanted modes are robustly stripped away. The fiber has fundamental-mode loss of 7.5 dB/km, while other modes of the 19-lattice-cell core see loss >3000 dB/km. This level of single-modedness is far better than previous 19-cell or 7-cell HCFs, and even comparable to some commercial solid-core fibers. Modeling indicates this measured loss can be improved. By breaking the connection between core size and single-modedness, this first PRISM demonstration opens a new path towards achieving the low-loss potential of HCFs.

4.
Opt Express ; 21(26): 32411-6, 2013 Dec 30.
Article in English | MEDLINE | ID: mdl-24514834

ABSTRACT

Energy scaling of femtosecond fiber lasers has been constrained by nonlinear impairments and optical fiber damage. Reducing the optical irradiance inside the fiber by increasing mode size lowers these effects. Using an erbium-doped higher-order mode fiber with 6000 µm(2) effective area and output fundamental mode re-conversion, we show a breakthrough in pulse energy from a monolithic fiber chirped pulse amplification system using higher-order mode propagation generating 300 µJ pulses with duration <500 fs (FWHM) and peak power >600 MW at 1.55 µm. The erbium-doped HOM fiber has both a record large effective mode area and excellent mode stability, even when coiled to reasonable diameter. This demonstration proves efficacy of a new path for high energy monolithic fiber-optic femtosecond laser systems.

SELECTION OF CITATIONS
SEARCH DETAIL
...