Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Nanoscale ; 16(20): 9659-9679, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38683667

ABSTRACT

Emerging photocatalytic applications of cerium dioxide (CeO2) include green hydrogen production, CO2 conversion to fuels, and environmental remediation of various toxic molecules. These applications leverage the oxygen storage capacity and tunable surface chemistry of CeO2 to photocatalyze the chosen reaction, but many open questions remain regarding the fundamental physics of photocatalysis over CeO2. The commonly ascribed 'bandgap' of CeO2 (∼3.1 eV) differs fundamentally from other photocatalytic oxides such as TiO2; UV light excites an electron from the CeO2 valence band into a 4f state, generating a polaron as the lattice distorts around the localized charge. Researchers often disregard the distinction between the 4f state and a traditional, delocalized conduction band, resulting in ambiguity regarding mechanisms of charge transfer and visible-light absorption. This review summarizes modern literature regarding CeO2 photocatalysis and discusses commonly reported photocatalytic reactions and visible light-sensitization strategies. We detail the often misunderstood fundamental physics of CeO2 photocatalysis and supplement previous work with original computational insights. The exceptional progress and remaining challenges of CeO2-based photocatalysts are highlighted, along with suggestions for further research directions based on the observed gaps in current understanding.

2.
ACS Appl Mater Interfaces ; 13(10): 12550-12561, 2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33656870

ABSTRACT

Multifunctional composites that couple high-capacity adsorbents with catalytic nanoparticles (NPs) offer a promising route toward the degradation of organophosphorus pollutants or chemical warfare agents (CWAs). We couple mesoporous TiO2 aerogels with plasmonic Cu nanoparticles (Cu/TiO2) and characterize the degradation of the organophosphorus CWA sarin under both dark and illuminated conditions. Cu/TiO2 aerogels combine high dark degradation rates, which are facilitated by hydrolytically active sites at the Cu||TiO2 interface, with photoenhanced degradation courtesy of semiconducting TiO2 and the surface plasmon resonance (SPR) of the Cu nanoparticles. The TiO2 aerogel provides a high surface area for sarin binding (155 m2 g-1), while the addition of Cu NPs increases the abundance of hydrolytically active OH sites. Degradation is accelerated on TiO2 and Cu/TiO2 aerogels with O2. Under broadband illumination, which excites the TiO2 bandgap and the Cu SPR, sarin degradation accelerates, and the products are more fully mineralized compared to those of the dark reaction. With O2 and broadband illumination, oxidation products are observed on the Cu/TiO2 aerogels as the hydrolysis products subsequently oxidize. In contrast, the photodegradation of sarin on TiO2 is limited by its slow initial hydrolysis, which limits the subsequent photooxidation. Accelerated hydrolysis occurs on Cu/TiO2 aerogels under visible illumination (>480 nm) that excites the Cu SPR but not the TiO2 bandgap, confirming that the Cu SPR excitation contributes to the broadband-driven activity. The high hydrolytic activity of the Cu/TiO2 aerogels combined with the photoactivity upon TiO2 bandgap excitation and Cu SPR excitation is a potent combination of hydrolysis and oxidation that enables the substantial chemical degradation of organophorphorus compounds.

3.
Nanoscale Adv ; 3(18): 5166-5182, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-36132624

ABSTRACT

Tungsten trioxide (WO3) is an abundant, versatile oxide that is widely explored for catalysis, sensing, electrochromic devices, and numerous other applications. The exploitation of WO3 in nanosheet form provides potential advantages in many of these fields because the 2D structures have high surface area and preferentially exposed facets. Relative to bulk WO3, nanosheets expose more active sites for surface-sensitive sensing/catalytic reactions, and improve reaction kinetics in cases where ionic diffusion is a limiting factor (e.g. electrochromic or charge storage). Synthesis of high aspect ratio WO3 nanosheets, however, is more challenging than other 2D materials because bulk WO3 is not an intrinsically layered material, making the widely-studied sonication-based exfoliation methods used for other 2D materials not well-suited to WO3. WO3 is also highly complex in terms of how the synthesis method affects the properties of the final material. Depending on the route used and subsequent post-synthesis treatments, a wide variety of different morphologies, phases, exposed facets, and defect structures are created, all of which must be carefully considered for the chosen application. In this review, the recent developments in WO3 nanosheet synthesis and their impact on performance in various applications are summarized and critically analyzed.

4.
ACS Appl Mater Interfaces ; 12(37): 41277-41287, 2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32814427

ABSTRACT

We describe the opportunity to deploy aerogels-an ultraporous nanoarchitecture with co-continuous networks of meso/macropores and covalently bonded nanoparticulates-as a platform to address the nature of the electronic, ionic, and mass transport that underlies catalytic activity. As a test case, we fabricated Au||TiO2 junctions in composite guest-host aerogels in which ∼5 nm Au nanoparticles are incorporated either directly into the anatase TiO2 network (Au "in" TiO2, AuIN-TiO2 aerogel) or deposited onto preformed TiO2 aerogel (Au "on" TiO2, AuON/TiO2 aerogel). The metal-meets-oxide nanoscale interphase as visualized by electron tomography feature extended three-dimensional (3D) interfaces, but AuIN-TiO2 aerogels impose a greater degree of Au contact with TiO2 particles than does the AuON/TiO2 form. Both aerogel variants enable transport of electrons over micrometer-scale distances across the TiO2 network to Au||TiO2 junctions, as evidenced by electron paramagnetic resonance (EPR) and ultrafast visible pump-IR probe time-resolved absorption spectroscopy. The siting of gold nanoparticles in the TiO2 network more effectively disperses trapped electrons. Density functional theory (DFT) calculations find that increased physical contact between Au and TiO2, induced by oxygen vacancies, produces increased hybridization of midgap states and quenches unpaired trapped electrons. We assign the apparent differences in electron-transport capabilities to a combination of the relatively better-wired Au||TiO2 junctions in AuIN-TiO2 aerogels, which have a greater capacity to dilute accumulated charge over a larger interfacial surface area, with an enhanced ability to discharge the accumulated electrons via catalytic reduction of adsorbed O2 to O2- at the interface. Solid-state 1H nuclear magnetic resonance experiments show that proton spin-lattice relaxation times and possibly proton diffusion are strongly coupled to Au||TiO2 interfacial design, likely through spin coupling of protons to unpaired electrons trapped at the TiO2 network. Taken together, our results show that Au||TiO2 interfacial design strongly impacts charge carrier (electron and proton) transport over mesoscale distances in catalytic aerogel architectures.

5.
Nanoscale Adv ; 2(10): 4547-4556, 2020 Oct 13.
Article in English | MEDLINE | ID: mdl-36132898

ABSTRACT

Photodeposition of Cu nanoparticles on ceria (CeO2) aerogels generates a high surface area composite material with sufficient metallic Cu to exhibit an air-stable surface plasmon resonance. We show that balancing the surface area of the aerogel support with the Cu weight loading is a critical factor in retaining stable Cu0. At higher Cu weight loadings or with a lower support surface area, Cu aggregation is observed by scanning and transmission electron microscopy. Analysis of Cu/CeO2 using X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy finds a mixture of Cu2+, Cu+, and Cu0, with Cu+ at the surface. At 5 wt% Cu, Cu/CeO2 aerogels exhibit high activity for heterogeneous CO oxidation catalysis at low temperatures (94% conversion of CO at 150 °C), substantially out-performing Cu/TiO2 aerogel catalysts featuring the same weight loading of Cu on TiO2 (20% conversion of CO at 150 °C). The present study demonstrates an extension of our previous concept of stabilizing catalytic Cu nanoparticles in low oxidation states on reducing, high surface area aerogel supports. Changing the reducing power of the support modulates the catalytic activity of mixed-valent Cu nanoparticles and metal oxide support.

6.
Photochem Photobiol Sci ; 18(6): 1526-1532, 2019 Jun 12.
Article in English | MEDLINE | ID: mdl-30984955

ABSTRACT

The large standard reduction potential of an aqueous solvated electron (eaq-, E° = -2.9 V) makes it an attractive candidate for reductive treatment of wastewater contaminants. Using transient absorption spectroscopy, the nanosecond to microsecond dynamics of eaq- generated from 10 mM solutions of Na2SO3 at pH 4 to 11 in H2O and D2O are characterized, resulting in the determination that between pH 4 and 9 it is the HSO3-, and not H+ as previously postulated by others, that effectively quenches eaq-. The observed bimolecular quenching rate constant (k = 1.2 × 108 M-1 s-1) for eaq- deactivation by HSO3- is found to be consistent with a Brønsted acid catalysis mechanism resulting in formation of H˙ and SO32-. A large solvent isotope effect is observed from the lifetimes of the eaq- in H2O compared to D2O (kH2O/kD2O = 4.4). In addition, the bimolecular rate constant for eaq- deactivation by DSO3- (k = 2.7 × 107 M-1 s-1) is found to be an order of magnitude lower than by HSO3-. These results highlight the role of acids, such as HSO3-, in competition with organic contaminant targets for eaq- and, by extension, that knowledge of the pKa of eaq- sources can be a predictive measure of the effective pH range for the treatment of wastewater contaminants.

7.
J Phys Chem C Nanomater Interfaces ; 121(7): 4037-4044, 2017 Feb 23.
Article in English | MEDLINE | ID: mdl-28890744

ABSTRACT

Thin-film ruthenium dioxide (RuO2) is a promising alternative material as a conductive electrode in electronic applications because its rutile crystalline form is metallic and highly conductive. Herein, a solution-deposition multi-layer technique is employed to fabricate ca. 70 ± 20 nm thick films (nanoskins) and terahertz spectroscopy is used to determine their photoconductive properties. Upon calcining at temperatures ranging from 373 K to 773 K, nanoskins undergo a transformation from insulating (localized charge transport) behavior to metallic behavior. Terahertz time-domain spectroscopy (THz-TDS) indicates that nanoskins attain maximum static conductivity when calcined at 673 K (σ = 1030 ± 330 S·cm-1). Picosecond time-resolved Terahertz spectroscopy (TRTS) using 400 nm and 800 nm excitation reveals a transition to metallic behavior when calcined at 523 K. For calcine temperatures less than 523 K, the conductivity increases following photoexcitation (ΔE < 0) while higher calcine temperatures yield films composed of crystalline, rutile RuO2 and the conductivity decreases (ΔE > 0) following photoexcitation.

8.
Nanoscale ; 9(32): 11720-11729, 2017 Aug 17.
Article in English | MEDLINE | ID: mdl-28776054

ABSTRACT

Ultraporous copper/titanium dioxide (Cu/TiO2) aerogels supporting <5 nm diameter copper nanoparticles are active for surface plasmon resonance (SPR)-driven photocatalysis. The extended nanoscale Cu‖TiO2 junctions in Cu/TiO2 composite aerogels-which arise as a result of photodepositing copper at the surface of the nanoparticulate-bonded TiO2 aerogel architecture-stabilize Cu against oxidation to an extent that preserves the plasmonic behavior of the nanoparticles, even after exposure to oxidizing conditions. The metallicity of the Cu nanoparticles within the TiO2 aerogel is verified by aberration-corrected scanning transmission electron microscopy, electron energy-loss spectroscopy, and infrared spectroscopy using CO binding as a probe to distinguish Cu(0) from Cu(i). In contrast, photoreduction of Cu(ii) at a commercial nanoscale anatase TiO2 powder with primary particle sizes significantly larger than those in the aerogel results in a copper oxide/TiO2 composite that exhibits none of the plasmonic character of Cu nanoparticles. We attribute the persistence of plasmonic Cu nanoparticles without the use of ligand stabilizers to the arrangement of Cu and TiO2 within the aerogel architecture where each Cu nanoparticle is in contact with multiple nanoparticles of the reducing oxide. The wavelength dependence of the photoaction spectra for Cu/TiO2 aerogel films reveals visible-light photocatalytic oxidation activity initiated by an SPR-driven process-as opposed to photo-oxidation initiated by excitation of narrow-bandgap copper oxides.

9.
Langmuir ; 33(37): 9444-9454, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28723093

ABSTRACT

We use plasmonic Au-TiO2 aerogels as a platform in which to marry synthetically thickened particle-particle junctions in TiO2 aerogel networks to Au∥TiO2 interfaces and then investigate their cooperative influence on photocatalytic hydrogen (H2) generation under both broadband (i.e., UV + visible light) and visible-only excitation. In doing so, we elucidate the dual functions that incorporated Au can play as a water reduction cocatalyst and as a plasmonic sensitizer. We also photodeposit non-plasmonic Pt cocatalyst nanoparticles into our composite aerogels in order to leverage the catalytic water-reducing abilities of Pt. This Au-TiO2/Pt arrangement in three dimensions effectively utilizes conduction-band electrons injected into the TiO2 aerogel network upon exciting the Au SPR at the Au∥TiO2 interface. The extensive nanostructured high surface-area oxide network in the aerogel provides a matrix that spatially separates yet electrochemically connects plasmonic nanoparticle sensitizers and metal nanoparticle catalysts, further enhancing solar-fuels photochemistry. We compare the photocatalytic rates of H2 generation with and without Pt cocatalysts added to Au-TiO2 aerogels and demonstrate electrochemical linkage of the SPR-generated carriers at the Au∥TiO2 interfaces to downfield Pt nanoparticle cocatalysts. Finally, we investigate visible light-stimulated generation of conduction band electrons in Au-TiO2 and TiO2 aerogels using ultrafast visible pump/IR probe spectroscopy. Substantially more electrons are produced at Au-TiO2 aerogels due to the incorporated SPR-active Au nanoparticle, whereas the smaller population of electrons generated at Au-free TiO2 aerogels likely originate at shallow traps in the high surface-area mesoporous aerogel.

10.
Langmuir ; 33(37): 9416-9425, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28617602

ABSTRACT

Platinum is state-of-the-art for fast electron transfer whereas carbon electrodes, which have semimetal electronic character, typically exhibit slow electron-transfer kinetics. But when we turn to practical electrochemical devices, we turn to carbon. To move energy devices and electro(bio)analytical measurements to a new performance curve requires improved electron-transfer rates at carbon. We approach this challenge with electroless deposition of disordered, nanoscopic anhydrous ruthenium oxide at pyrolytic carbon prepared by thermal decomposition of benzene (RuOx@CVD-C). We assessed traditionally fast, chloride-assisted ([Fe(CN)6]3-/4-) and notoriously slow ([Fe(H2O)6]3+/2+) electron-transfer redox probes at CVD-C and RuOx@CVD-C electrodes and calculated standard heterogeneous rate constants as a function of heat treatment to crystallize the disordered RuOx domains to their rutile form. For the fast electron-transfer probe, [Fe(CN)6]3-/4-, the rate increases by 34× over CVD-C once the RuOx is calcined to form crystalline rutile RuO2. For the classically outer-sphere [Fe(H2O)6]3+/2+, electron-transfer rates increase by an even greater degree over CVD-C (55×). The standard heterogeneous rate constant for each probe approaches that observed at Pt but does so using only minimal loadings of RuOx.

11.
Langmuir ; 33(37): 9390-9397, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28627895

ABSTRACT

Electrocatalysis of the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) was assessed for a series of Ni-substituted ferrites (NiyFe1-yOx, where y = 0.1 to 0.9) as expressed in porous, high-surface-area forms (ambigel and aerogel nanoarchitectures). We then correlate electrocatalytic activity with Ni:Fe stoichiometry as a function of surface area, crystallite size, and free volume. In order to ensure in-series comparisons, calcination at 350 °C/air was necessary to crystallize the respective NiyFe1-yOx nanoarchitectures, which index to the inverse spinel structure for Fe-rich materials (y ≤ 0.33), rock salt for the most Ni-rich material (y = 0.9), and biphasic for intermediate stoichiometry (0.5 ≤ y ≤ 0.67). In the intermediate Ni:Fe stoichiometric range (0.33 ≤ y ≤ 0.67), the OER current density at 390 mV increases monotonically with increasing Ni content and increasing surface area, but with different working curves for ambigels versus aerogels. At a common stoichiometry within this range, ambigels and aerogels yield comparable OER performance, but do so by expressing larger crystallite size (ambigel) versus higher surface area (aerogel). Effective OER activity can be achieved without requiring supercritical-fluid extraction as long as moderately high surface area, porous materials can be prepared. We find improved OER performance (η decreases from 390 to 373 mV) for Ni0.67Fe0.33Ox aerogel heat-treated at 300 °C/Ar, owing to an increase in crystallite size (2.7 to 4.1 nm). For the ORR, electrocatalytic activity favors Fe-rich NiyFe1-yOx materials; however, as the Ni-content increases beyond y = 0.5, a two-electron reduction pathway is still exhibited, demonstrating that bifunctional OER and ORR activity may be possible by choosing a nickel ferrite nanoarchitecture that provides high OER activity with sufficient ORR activity. Assessing the catalytic activity requires an appreciation of the multivariate interplay among Ni:Fe stoichiometry, surface area, crystallographic phase, and crystallite size.

12.
Plasmonics ; 12(3): 743-750, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28503102

ABSTRACT

Solution-deposited nanoscale films of RuO2 ("nanoskins") are effective transparent conductors once calcined to 200 °C. Upon heating the nanoskins to higher temperature the nanoskins show increased transmission at 550 nm. Electronic microscopy and X-ray diffraction show that the changes in the optical spectrum are accompanied by the formation of rutile RuO2 nanoparticles. The mechanism for the spectral evolution is clearly observed with ultrafast optical measurements. Following excitation at 400 nm, nanoskins calcined at higher temperatures show increased transmission above 650 nm, consistent with the photobleaching of a surface-plasmon resonance (SPR) band. Calculations based on the optical constants of RuO2 substantiate the presence of SPR absorption. Sheet resistance and transient terahertz photoconductivity measurements establish that the nanoskins electrically de-wire into separated particles. The plasmonic behavior of the nanoskins has implications their use in a range of optical and electrochemical applications.

13.
ACS Appl Mater Interfaces ; 9(3): 2387-2395, 2017 Jan 25.
Article in English | MEDLINE | ID: mdl-28006096

ABSTRACT

Using a solution-based, non-line-of sight synthesis, we electrolessly deposit ultrathin films of RuO2 ("nanoskins") on planar and 3D substrates and benchmark their activity and stability for oxygen-evolution reaction (OER) in acid electrolyte under device-relevant conditions. When an electrically contiguous ∼9 nm thick RuO2 nanoskin is expressed on commercially available, insulating SiO2 fiber paper, the RuO2@SiO2 electrode exhibits high current density at low overpotential (10 mA cm-2 @ η = 280 mV), courtesy of a catalyst amplified in 3D; however, the mass-normalized activity falls short of that achieved for films deposited on planar, metallic substrates (Ti foil). By wrapping the fibers with a <100 nm thick graphitic carbon layer prior to RuO2 deposition (RuO2@C@SiO2), we retain the high mass activity of the RuO2 (40-60 mA mg-1 @ η = 330 mV) and preserve the desirable macroscale properties of the 3D scaffold: porous, lightweight, flexible, and inexpensive. The RuO2@C@SiO2 anodes not only achieve the 10 mA cm-2 figure of merit at a low overpotential (η = ∼270 mV), but more importantly they do so while (1) minimizing the mass of catalyst needed to achieve this metric, (2) incorporating the catalyst into a practical electrode design, and (3) improving the long-term stability of the catalyst. Our best-performing anodes achieve state-of-the-art or better performance on the basis of area and mass, and do so with a catalyst density 300-580× less than that of bulk RuO2. By limiting the oxidizing potential required to evolve O2 at the electrode, even at 10 mA cm-2, we achieve stable activity for 100+ h.

14.
Nat Mater ; 15(11): 1166-1171, 2016 11.
Article in English | MEDLINE | ID: mdl-27571451

ABSTRACT

The spectrum of two-dimensional (2D) and layered materials 'beyond graphene' offers a remarkable platform to study new phenomena in condensed matter physics. Among these materials, layered hexagonal boron nitride (hBN), with its wide bandgap energy (∼5.0-6.0 eV), has clearly established that 2D nitrides are key to advancing 2D devices. A gap, however, remains between the theoretical prediction of 2D nitrides 'beyond hBN' and experimental realization of such structures. Here we demonstrate the synthesis of 2D gallium nitride (GaN) via a migration-enhanced encapsulated growth (MEEG) technique utilizing epitaxial graphene. We theoretically predict and experimentally validate that the atomic structure of 2D GaN grown via MEEG is notably different from reported theory. Moreover, we establish that graphene plays a critical role in stabilizing the direct-bandgap (nearly 5.0 eV), 2D buckled structure. Our results provide a foundation for discovery and stabilization of 2D nitrides that are difficult to prepare via traditional synthesis.

15.
Nanoscale ; 5(17): 8073-83, 2013 Sep 07.
Article in English | MEDLINE | ID: mdl-23877169

ABSTRACT

We demonstrate plasmonic enhancement of visible-light-driven splitting of water at three-dimensionally (3D) networked gold-titania (Au-TiO2) aerogels. The sol-gel-derived ultraporous composite nanoarchitecture, which contains 1 to 8.5 wt% Au nanoparticles and titania in the anatase form, retains the high surface area and mesoporosity of unmodified TiO2 aerogels and maintains stable dispersion of the ~5 nm Au guests. A broad surface plasmon resonance (SPR) feature centered at ~550 nm is present for the Au-TiO2 aerogels, but not Au-free TiO2 aerogels, and spans a wide range of the visible spectrum. Gold-derived SPR in Au-TiO2 aerogels cast as films on transparent electrodes drives photoelectrochemical oxidation of aqueous hydroxide and extends the photocatalytic activity of TiO2 from the ultraviolet region to visible wavelengths exceeding 700 nm. Films of Au-TiO2 aerogels in which Au nanoparticles are deposited on pre-formed TiO2 aerogels by a deposition-precipitation method (DP Au/TiO2) also photoelectrochemically oxidize aqueous hydroxide, but less efficiently than 3D Au-TiO2, despite having an essentially identical Au nanoparticle weight fraction and size distribution. For example, 3D Au-TiO2 containing 1 wt% Au is as active as DP Au/TiO2 with 4 wt% Au. The higher photocatalytic activity of 3D Au-TiO2 derives only in part from its ability to retain the surface area and porosity of unmodified TiO2 aerogel. The magnitude of improvement indicates that in the 3D arrangement either a more accessible photoelectrochemical reaction interphase (three-phase boundary) exists or more efficient conversion of excited surface plasmons into charge carriers occurs, thereby amplifying reactivity over DP Au/TiO2. The difference in photocatalytic efficiency between the two forms of Au-TiO2 demonstrates the importance of defining the structure of Au[parallel]TiO2 interfaces within catalytic Au-TiO2 nanoarchitectures.


Subject(s)
Gels/chemistry , Gold/chemistry , Light , Metal Nanoparticles/chemistry , Titanium/chemistry , Catalysis , Electrodes , Oxidation-Reduction , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...