Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phytopathology ; 89(10): 884-93, 1999 Oct.
Article in English | MEDLINE | ID: mdl-18944731

ABSTRACT

ABSTRACT Eutypa dieback is a perennial canker disease that adversely affects grape (Vitis vinifera) production throughout the world. The causal agent has been known as either Eutypa armeniacae or E. lata, and it has been unclear whether the two taxa are separate species. We analyzed 115 isolates of Eutypa and conspecific strains, including 106 from California, using amplified fragment length polymorphism (AFLP) and sequence analysis of the ribosomal DNA (rDNA) internal transcribed spacer (ITS) sequence. Strains from cultivated plant species exhibited an average genetic distance of 0.34, as calculated by the DICE coefficient (NTSYS-pc software). An unweighted pair-group method with arithmetic averages dendrogram revealed a genetically distinct (distance of 0.73) group of Eutypa strains from valley oak (Quercus lobata) and madrone (Arbutus menziesii) and a strain from grape. Analysis of rDNA ITS sequences strongly supported the genetically distinct cluster detected in the AFLP data. Combined data indicated the presence of two species of Eutypa (E. armeniacae and E. lata) in our sample population. However, both Eutypa species were capable of infecting native and cultivated hosts, suggesting the potential for native tree species to serve as inoculum sources for grape infection in California. Further investigations of E. armeniacae and E. lata would contribute to the development of a successful disease management strategy.

2.
Mol Gen Genet ; 251(4): 472-82, 1996 Jun 24.
Article in English | MEDLINE | ID: mdl-8709951

ABSTRACT

Variants of the pulsed-field gel electrophoresis technique were used in conjunction with two-dimensional DNA gel electrophoresis (2-DDGE) to determine the ratio of physical to genetic distance in two genetically defined intervals on barley chromosome 1H.2-DDGE analysis demonstrated that two loci that define a 0.3 cM interval, as determined by hybridization with BCD249, reside on a single 450-kb MluI fragment. This result indicates a maximum ratio of physical to genetic distance in this interval of 1500 kb/cM as compared to 3.7-4.2 Mb/cM for the barley genome as a whole. High molecular weight (HMW) DNA restricted with NotI and probed sequentially with MWG068 and BCD249 yield diffuse bands at approximately 2.8 Mb and 3.0 Mb in the C.I. 16151 and C.I. 16155 parental lines, respectively. These results suggest the maximum ratio of physical to genetic distance in the interval defined by these probes is 7.8 Mb/cM. Unique HMW DNA restriction fragment length polymorphisms (RFLP) were attributed to the presence of recombination breakpoints. Data from the recombination breakpoint analysis were used to estimate a ratio of physical to genetic distance of 2.5 Mb/cM in the Xbcd249.2-Xmwg068 interval and 0.465 Mb/cM in the Xbcd249.1-Xbcd249.2 interval. Both physical linkage and recombination breakpoint analysis indicate the Xbcd249.1-Xbcd249.2 interval is approximately five-fold smaller, physically, than the Xbcd249.2-Xmwg068 interval.


Subject(s)
Bacterial Proteins , Chromosome Mapping/methods , Hordeum/genetics , Blotting, Southern , DNA, Plant/chemistry , DNA, Plant/metabolism , DNA-Cytosine Methylases/metabolism , Deoxyribonucleases, Type II Site-Specific/metabolism , Genetic Markers , Homozygote , Molecular Weight , Polymorphism, Restriction Fragment Length , Recombination, Genetic
3.
Genome ; 37(3): 460-8, 1994 Jun.
Article in English | MEDLINE | ID: mdl-18470091

ABSTRACT

In barley (Hordeum vulgare L.), the Mla locus conditions reaction to the powdery mildew fungus Erysiphe graminis f.sp. hordei. Enrichment for genetic recombinants in the Mla region is possible by screening for recombination events between the flanking endosperm storage proteins hordeins C and B. Reciprocal crosses were made between the Franger (C.I. 16151) and Rupee (C.I. 16155) lines carrying the (Mla6 + Mla14) and Mla13 alleles, respectively. Recombinants were identified from F2 segregants by analyzing the extracted hordein polypeptides by sodium dodecyl sulphate - polyacrylamide gel electrophoresis. Two hundred and seventy-six recombinant gametes were identified from the 1800 seeds that were screened. Recombination of Mla alleles was analyzed by inoculating F4 recombinant lines with three isolates of E. graminis (A27, 5874, and CR3), which recognize specific Mla alleles. The linkage order established is Hor1-Mla6-Mla13-Mla14-Hor2. The genetic distances between Hor1-Mla6, Mla6-Mla13, and Mla13-Hor2, obtained using Mapmaker 3.0b F3 intercross analysis, are 3.9, 0.2, and 5.2 cM, respectively.

4.
Plant Mol Biol ; 22(1): 113-27, 1993 Apr.
Article in English | MEDLINE | ID: mdl-8499611

ABSTRACT

In an attempt to modulate the metabolism of polyamines in plants, Agrobacterium tumefaciens strains were produced which contained either a full-length or a 3'-truncated mouse ornithine decarboxylase (ODC) cDNA under the control of the cauliflower mosaic virus 35S promoter. Plants of Nicotiana tabacum cv. Xanthi were used for transformation with these two strains of Agrobacterium. Transformations were confirmed by Southern hybridization and amplification by polymerase chain reaction. Two plants containing the full-length cDNA (ODC-12 and ODC-30) and two containing the truncated cDNA (12701-2 and 12701-31) were selected for further experiments. Northern blot analysis indicated that transcription was occurring and western blot analysis detected a polypeptide of ca. 50 kDa that was unique to the plants transformed with truncated ODC cDNA. In order to distinguish between the native and the mouse ODC in the transformed tissues, enzyme activity was assayed at pH optima for the two enzymes, i.e. pH 8.2 and 6.8, respectively. Substantially higher levels of ODC activity were seen at pH 6.8 (optimum for mouse ODC) in the transformants as compared to the controls. This ODC activity was inhibited by alpha-difluoromethylornithine and anti-mouse ODC antisera in a manner consistent with that reported for the mouse ODC. Analysis of cellular polyamines showed significantly elevated levels (4-12-fold) of putrescine in callus derived from transformed plant tissues as compared to the controls. The modulation of polyamine biosynthesis in plants by these techniques should allow us to further analyze the role of these ubiquitous compounds in plant growth and development.


Subject(s)
Nicotiana/metabolism , Ornithine Decarboxylase/biosynthesis , Plants, Genetically Modified/metabolism , Plants, Toxic , Polyamines/analysis , Agrobacterium tumefaciens/genetics , Animals , Base Sequence , Blotting, Northern , Blotting, Southern , Blotting, Western , Mice , Molecular Sequence Data , Ornithine Decarboxylase/genetics , Ornithine Decarboxylase Inhibitors , Peptide Fragments/biosynthesis , Putrescine/analysis , Recombinant Proteins/biosynthesis , Nicotiana/genetics , Transformation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...