Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 140(9): 094702, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24606371

ABSTRACT

Photodissociation of amorphous solid water (ASW) deposited on a thinly oxidized copper substrate at 82 K was studied by measuring O((3)PJ=2,1,0) photoproducts detected with resonance-enhanced multiphoton ionization. For each spin-orbit state, the oxygen atom time-of-flight spectrum was measured as a function of H2O exposure, which is related to ice thickness, and 157-nm irradiation time. Four Maxwell-Boltzmann distributions with translational temperatures of 10,000 K, 1800 K, 400 K, and 82 K were found to fit the data. The most likely formation mechanisms are molecular elimination following ionization of water and ion-electron recombination, secondary recombination of hydroxyl radicals, and photodissociation of adsorbed hydroxyl radicals. Evidence for O-atom diffusion through bulk ASW was found for H2O exposures of at least 5 Langmuir (1 L = 10(-6) Torr s). The cross sections for O((3)P2) depletion were 1.3 × 10(-19) and 6.5 × 10(-20) cm(2) for 1 and 5 L, respectively.

2.
J Chem Phys ; 139(16): 164702, 2013 Oct 28.
Article in English | MEDLINE | ID: mdl-24182059

ABSTRACT

The photodesorption of water molecules from amorphous solid water (ASW) by 157-nm irradiation has been examined using resonance-enhanced multiphoton ionization. The rotational temperature has been determined, by comparison with simulations, to be 425 ± 75 K. The time-of-flight spectrum of H2O (v = 0) has been fit with a Maxwell-Boltzmann distribution with a translational temperature of 700 ± 200 K (0.12 ± 0.03 eV). H(+) and OH(+) fragment ions have been detected with non-resonant multiphoton ionization, indicating vibrationally excited parent water molecules with translational energies of 0.24 ± 0.08 eV. The cross section for water removal from ASW by 7.9-eV photons near 100 K is (6.9 ± 1.8) × 10(-20) cm(2) for >10 L H2O exposure. Electronic structure computations have also probed the excited states of water and the mechanisms of desorption. Calculated electron attachment and detachment densities show that exciton delocalization leads to a dipole reversal state in the first singlet excited state of a model system of hexagonal water ice. Ab Initio Molecular Dynamics simulations show possible desorption of a photo-excited water molecule from this cluster, though the non-hydrogen bonded OH bond is stretched significantly before desorption. Potential energy curves of this OH stretch in the electronic excited state show a barrier to dissociation, lending credence to the dipole reversal mechanism.

3.
J Chem Phys ; 138(8): 084703, 2013 Feb 28.
Article in English | MEDLINE | ID: mdl-23464168

ABSTRACT

Photodissociation dynamics of methyl iodide (CH3I) adsorbed on both amorphous solid water (ASW) and porous amorphous solid water (PASW) has been investigated. The ejected ground-state I((2)P3∕2) and excited-state I((2)P1∕2) photofragments produced by 260- and 290-nm photons were detected using laser resonance-enhanced multiphoton ionization. In contrast to gas-phase photodissociation, (i) the I((2)P3∕2) photofragment is favored compared to I((2)P1∕2) at both wavelengths, (ii) I((2)P3∕2) and I((2)P1∕2) have velocity distributions that depend upon ice morphology, and (iii) I2 is produced on ASW. The total iodine [I((2)P3∕2)+I((2)P1∕2)+I2] yield varies with substrate morphology, with greater yield from ASW than PASW using both 260- and 290-nm photons. Temperature-programmed desorption studies demonstrate that ice porosity enhances the trapping of adsorbed CH3I, while pore-free ice likely allows monomer adsorption and the formation of two-dimensional CH3I clusters. Reactions or collisions involving these clusters, I atomic fragments, or I-containing molecular fragments at the vacuum-surface interface can result in I2 formation.

SELECTION OF CITATIONS
SEARCH DETAIL
...