Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Qual ; 47(5): 1284-1292, 2018 09.
Article in English | MEDLINE | ID: mdl-30272800

ABSTRACT

Gypsum has a long history as a soil amendment. Information on how flue gas desulfurization (FGD) gypsum affects soil, water, and plant properties across a range of climates and soils is lacking. We conducted a meta-analysis using data from 10 field sites in the United States (Alabama, Arkansas, Indiana, New Mexico, North Dakota, Ohio, and Wisconsin). Each site used three rates each of mined and FGD gypsums plus an untreated control treatment. Gypsum rates included a presumed optimal agronomic rate plus one rate lower and one rate higher than the optimal. Gypsum was applied once at the beginning of each study, and then data were collected for 2 to 3 yr. The meta-analyses used response ratios () calculated by dividing the treatment value by the control value for crop yield or for each measured element in plant, soil, and vadose water. These values were tested for their significance with values. Most values varied only slightly from 1.00. Gypsum significantly changed more values from 1.00 for vadose water than for soil or crop tissue in terms of numbers of elements affected (11 for water, 7 for soil, and 8 for crop tissue). The highest value for soil was 1.57 (Ca) which was similar for both mined and FGD gypsum, for crop tissue was 1.46 (Sr) for mined gypsum, and for vadose water was 4.22 (S) for FGD gypsum. The large increase in Ca and S is often a desired response to gypsum application. Lowest values occurred in crop tissue for Mg (0.89) with FGD gypsum and for Ni (0.92 or 0.93) with both gypsums. Although some sites showed crop yield responses to gypsum, the overall mean values for mined gypsum (0.987) and for FGD gypsum (1.00) were not significantly different from 1.00 in this short-term study.


Subject(s)
Agriculture/methods , Calcium Sulfate/chemistry , Conservation of Natural Resources , Fertilizers , Soil Pollutants/chemistry , Plants , Soil/chemistry , United States
2.
J Environ Qual ; 34(4): 1234-42, 2005.
Article in English | MEDLINE | ID: mdl-15942042

ABSTRACT

Movement of liquor constituents from animal-waste lagoons has the potential to degrade ground water quality. The depth of movement and concentrations of lagoon-liquor constituents in the soil underlying three cattle (Bos taurus)-waste retention lagoons and one swine (Sus scrofa)-waste lagoon were determined. Samples were taken by using a direct-push coring machine, dissected by depth, and analyzed for total N, organic C, CaCO3, pH, cation exchange capacity (CEC), texture, and extractable NO3, NH(4), P, Cl, Ca, Mg, K, and Na. Ammonium N concentrations were greatest in the upper 0.5 m of soil under all four lagoons with concentrations ranging from 94 to 1139 mg kg(-1). Organic N was determined to make up between 39 and 74% of the total N beneath all lagoons. The swine lagoon had 2.4 kg N m(-2) in the underlying soil whereas the cattle lagoon with highest quantity of N had 1.2 kg N m(-2) in the underlying soil. Although N concentrations decreased with depth, N was greater than expected background levels at the bottom of some cores, indicating that the sampling efforts did not reach the bottom of the N plume. Nitrate N concentrations were generally less than 5 mg kg(-1) immediately below the lagoon floor. In the uppermost 0.5 m of soil underlying the swine and three cattle lagoons, NH4+ occupied 44% and between 1 and 22% of the soil cation exchange sites, respectively. The depth of movement of N under these lagoons, as much as 4 m, may pose remediation difficulties at lagoon closure.


Subject(s)
Nitrogen/analysis , Refuse Disposal , Water Pollutants/analysis , Animals , Cattle , Environmental Monitoring , Quality Control , Swine , Water Movements
3.
J Environ Qual ; 34(3): 951-62, 2005.
Article in English | MEDLINE | ID: mdl-15843659

ABSTRACT

Movement of NH(4)(+) below animal waste lagoons is generally a function of the whole-lagoon seepage rate, soil mineralogy, cations in the lagoon liquor, and selectivity for NH(4)(+) on the soil-exchange sites. Binary exchange reactions (Ca(2+)-K(+), Ca(2+)-NH(4)(+), and K(+)-NH(4)(+)) were conducted on two soils from the Great Plains and with combinations of these soils with bentonite or zeolite added. Binary exchanges were used to predict ternary exchanges Ca(2+)-K(+)-NH(4)(+) following the Rothmund-Kornfeld approach and Gaines-Thomas convention. Potassium and NH(4)(+) were preferred over Ca(2+), and K(+) was preferred over NH(4)(+) in all soils and soils with amendments. Generally, the addition of bentonite did not change cation selectivity over the native soils, whereas the addition of zeolite did. The Rothmund-Kornfeld approach worked well for predicting equivalent fractions of cations on the exchanger phase when only ternary-solution phase compositions were known. Actual swine- and cattle-lagoon solution compositions and the Rothmund-Kornfeld approach were used to project that native soils are predicted to retain 53 and 23%, respectively, of the downward-moving NH(4)(+) on their exchange sites. Additions of bentonite or zeolite to soils under swine lagoons may only slightly improve the equivalent fraction of NH(4)(+) on the exchange sites. Although additions of bentonite or zeolite may not help increase the NH(4)(+) selectivity of a liner material, increases in the overall cation exchange capacity (CEC) of a soil will ultimately decrease the amount of soil needed to adsorb downward-moving NH(4)(+).


Subject(s)
Ammonia/chemistry , Models, Theoretical , Soil , Waste Disposal, Fluid/methods , Ammonia/analysis , Animals , Animals, Domestic , Bentonite/chemistry , Manure , Zeolites/chemistry
4.
J Environ Qual ; 34(1): 198-206, 2005.
Article in English | MEDLINE | ID: mdl-15647550

ABSTRACT

Gaseous emissions from animal manure storage facilities can contribute to global greenhouse gas inventories. Biogas fluxes were measured for one year from a 2-ha anaerobic lagoon that received waste from a 10500-head swine (Sus scrofa) finishing operation in southwestern Kansas. During 2001, ebullition of biogas was measured continuously by using floating platforms equipped with gas-collection domes. Periodically, the composition of the biogas was determined by using gas chromatography. Detailed records of feed quality and quantity and animal weights and gains also were obtained to determine the carbon budget of the facility (barns and lagoon). Flux of biogas was very seasonal, with peak emission (18.7 mol m(-2) d(-1)) occurring in early June. Nearly 50% of the annual biogas losses occurred during a 30-d period beginning on day of year (DOY) 146. Flux patterns suggest that the start of the high biogas production period was governed by temperature, while the decline in production in mid-June was caused by substrate limitations. Average biogas composition was 0.71 L CH4 L(-1). The quantity of CH4 released from the lagoon was 86.3 Mg yr(-1), which represents about 38 g of CH4 per kg of animal weight gain. The average flux density of biogas from the lagoon was 382 mol m(-2) yr(-1) or 728 mol yr(-1) per resident animal where the resident animal population was 10500. Flux rates of CH4 were 1.7 to 3.4 times less than predictions made with Intergovernmental Panel on Climate Change (IPCC) models. Additional research is needed on the carbon budgets of other animal feeding operations so that better estimates of greenhouse gas emissions can be determined.


Subject(s)
Animal Husbandry , Carbon/analysis , Manure , Animal Feed , Animals , Carbon/metabolism , Environmental Monitoring , Gases , Seasons , Swine , Volatilization
SELECTION OF CITATIONS
SEARCH DETAIL
...