Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Modell ; 314: 80-89, 2015 Oct 24.
Article in English | MEDLINE | ID: mdl-26309347

ABSTRACT

BACKGROUND: African trypanosomiasis, also known as "sleeping sickness" in humans and "nagana" in livestock is an important vector-borne disease in Sub-Saharan Africa. Control of trypanosomiasis has focused on eliminating the vector, the tsetse fly (Glossina, spp.). Effective tsetse fly control planning requires models to predict tsetse population and distribution changes over time and space. Traditional planning models have used statistical tools to predict tsetse distributions and have been hindered by limited field survey data. METHODOLOGY/RESULTS: We developed an Agent-Based Model (ABM) to provide timing and location information for tsetse fly control without presence/absence training data. The model is driven by daily remotely-sensed environment data. The model provides a flexible tool linking environmental changes with individual biology to analyze tsetse control methods such as aerial insecticide spraying, wild animal control, releasing irradiated sterile tsetse males, and land use and cover modification. SIGNIFICANCE: This is a bottom-up process-based model with freely available data as inputs that can be easily transferred to a new area. The tsetse population simulation more closely approximates real conditions than those using traditional statistical models making it a useful tool in tsetse fly control planning.

2.
Ann Assoc Am Geogr ; 102(2): 1038-1048, 2012.
Article in English | MEDLINE | ID: mdl-26316656

ABSTRACT

African trypanosomiasis, otherwise known as sleeping sickness in humans and nagana in animals, is a parasitic protist passed cyclically by the tsetse fly. Despite more than a century of control and eradication efforts, the fly remains widely distributed across Africa and coextensive with other prevalent diseases. Control and planning are hampered by spatially and temporally variant vector distributions, ecologically irrelevant boundaries, and neglect. Tsetse are particularly well suited to move into previously disease-free areas under climate change scenarios, placing unprepared populations at risk. Here we present the modeling framework ATcast, which combines a dynamically downscaled regional climate model with a temporally and spatially dynamic species distribution model to predict tsetse populations over space and time. These modeled results are integrated with Kenyan population data to predict, for the period 2050 to 2059, exposure potential to tsetse and, by association, sleeping sickness and nagana across Kenya.

3.
Int J Health Geogr ; 8: 39, 2009 Jun 29.
Article in English | MEDLINE | ID: mdl-19563674

ABSTRACT

BACKGROUND: Tsetse flies are the primary vector for African trypanosomiasis, a disease that affects both humans and livestock across the continent of Africa. In 1973 tsetse flies were estimated to inhabit 22% of Kenya; by 1996 that number had risen to roughly 34%. Efforts to control the disease were hampered by a lack of information and costs associated with the identification of infested areas. Given changing spatial and demographic factors, a model that can predict suitable tsetse fly habitat based on land cover and climate change is critical to efforts aimed at controlling the disease. In this paper we present a generalizable method, using a modified Mapcurves goodness of fit test, to evaluate the existing publicly available land cover products to determine which products perform the best at identifying suitable tsetse fly land cover. RESULTS: For single date applications, Africover was determined to be the best land use land cover (LULC) product for tsetse modeling. However, for changing habitats, whether climatically or anthropogenically forced, the IGBP DISCover and MODIS type 1 products where determined to be most practical. CONCLUSION: The method can be used to differentiate between various LULC products and be applied to any such research when there is a known relationship between a species and land cover.


Subject(s)
Demography , Ecosystem , Geographic Information Systems , Models, Statistical , Tsetse Flies , Animals , Greenhouse Effect , Kenya/epidemiology , Trypanosomiasis, African/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...