Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 27(19): 3859-65, 1999 Oct 01.
Article in English | MEDLINE | ID: mdl-10481025

ABSTRACT

We have explored the potential of the Tn 552 in vitro transposition reaction as a genetic tool. The reaction is simple (requiring a single protein component), robust and efficient, readily producing insertions into several percent of target DNA. Most importantly, Tn 552 insertions in vitro appear to be essentially random. Extensive analyses indicate that the transposon exhibits no significant regional or sequence specificity for target DNA and leaves no discernible 'cold' spots devoid of insertions. The utility of the in vitro reaction for DNA sequencing was demonstrated with a cosmid containing the Mycobacterium smegmatis recBCD gene cluster. The nucleotide sequence of the entire operon was determined using 71 independent Tn 552 insertions, which generated over 13.5 kb of unique sequence and simultaneously provided a comprehensive collection of insertion mutants. The relatively short ends of Tn 552 make construction of novel transposons a simple process and we describe several useful derivatives. The data presented suggest that Tn 552 transposition is a valuable addition to the arsenal of tools available for molecular biology and genomics.


Subject(s)
DNA Transposable Elements , Mutagenesis, Insertional , Sequence Analysis, DNA/methods , Exodeoxyribonuclease V , Exodeoxyribonucleases/genetics , Molecular Sequence Data , Mycobacterium smegmatis/genetics , Transposases
2.
J Mol Biol ; 274(4): 491-504, 1997 Dec 12.
Article in English | MEDLINE | ID: mdl-9417930

ABSTRACT

The insertion sequence IS903 encodes a 307 amino acid residue protein, transposase, that is essential for transposition. It is a multi-functional DNA-binding protein that specifically recognizes the 18 bp inverted repeats at the ends of the element and also recognizes DNa non-specifically when it captures a target site. In addition, transposase performs catalytic functions when it mediates the cleavage and religation steps of transposition. We have carried out deletion and mutational analyses to define functional domains of the transposase protein. The deletion studies delineate a 99 residue region of the protein (residues 31 to 129) that specifies binding to the inverted repeat. A slightly larger maltose-binding protein-transposase fusion that includes residues 22 to 139 (Tnp 22-139) binds as efficiently and with the same specificity as the full-length transposase protein. Tnp 22-139 also induces a DNA bend similar to that of the wild-type protein, and so we conclude that all binding and bending specificity is contained within the N-terminal domain of the protein. Unlike full-length transposase, Tnp 22-139 forms additional higher-order complexes in band-shift gels suggesting that the deletion has exposed a surface(s) capable of participating in protein-protein interactions. Six highly conserved residues in the C-terminal portion of the protein were mutated to alanine. Each mutant protein was binding-proficient but defective in transposition. The phenotype of these substitutions, and their alignment with residues shown to abolish catalysis of other transposases and integrases, suggest that these are residues responsible for catalytic steps in transposition of IS903; we believe three of these residues comprise the DDE motif, conserved in transposases and integrases. Our data are consistent with IS903 transposase being composed of two domains: an N-terminal domain primarily involved in DNA binding and a C-terminal domain that is involved in catalysis.


Subject(s)
Transposases/chemistry , Transposases/metabolism , Amino Acid Sequence , Binding Sites , Cloning, Molecular , Conserved Sequence , DNA/chemistry , DNA/metabolism , DNA Transposable Elements , Molecular Sequence Data , Mutation , Nucleic Acid Conformation , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Deletion , Transposases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...