Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Adv ; 9(47): eadi0074, 2023 11 24.
Article in English | MEDLINE | ID: mdl-37992166

ABSTRACT

Chromatin regulation plays a pivotal role in establishing and maintaining cellular identity and is one of the top pathways disrupted in autism spectrum disorder (ASD). The hippocampus, composed of distinct cell types, is often affected in patients with ASD. However, the specific hippocampal cell types and their transcriptional programs that are dysregulated in ASD are unknown. Using single-nucleus RNA sequencing, we show that the ASD gene, lysine demethylase 5A (KDM5A), regulates the development of specific subtypes of excitatory and inhibitory neurons. We found that KDM5A is essential for establishing hippocampal cell identity by controlling a differentiation switch early in development. Our findings define a role for the chromatin regulator KDM5A in establishing hippocampal cell identity and contribute to the emerging convergent mechanisms across ASD.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Humans , Chromatin/genetics , Histones/genetics , Histones/metabolism , Autistic Disorder/genetics , Autism Spectrum Disorder/genetics , Cell Differentiation/genetics , Retinoblastoma-Binding Protein 2/genetics
2.
Cell Genom ; 3(7): 100322, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37492102

ABSTRACT

Autism spectrum disorder (ASD) is a group of complex neurodevelopmental conditions affecting communication and social interaction in 2.3% of children. Studies that demonstrated its complex genetic architecture have been mainly performed in populations of European ancestry. We investigate the genetics of ASD in an East African cohort (129 individuals) from a population with higher prevalence (5%). Whole-genome sequencing identified 2.13 million private variants in the cohort and potentially pathogenic variants in known ASD genes (including CACNA1C, CHD7, FMR1, and TCF7L2). Admixture analysis demonstrated that the cohort comprises two ancestral populations, African and Eurasian. Admixture mapping discovered 10 regions that confer ASD risk on the African haplotypes, containing several known ASD genes. The increased ASD prevalence in this population suggests decreased heterogeneity in the underlying genetic etiology, enabling risk allele identification. Our approach emphasizes the power of African genetic variation and admixture analysis to inform the architecture of complex disorders.

SELECTION OF CITATIONS
SEARCH DETAIL
...