Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
J Neurosurg Spine ; 37(6): 836-842, 2022 12 01.
Article in English | MEDLINE | ID: mdl-35901707

ABSTRACT

OBJECTIVE: Adjacent-segment disease (ASD) proximal to lumbosacral fusion is assumed to result from increased stress and motion that extends above or below the fusion construct. Sublaminar bands (SBs) have been shown to potentially mitigate stresses in deformity constructs. A similar application of SBs in lumbar fusions is not well described yet may potentially mitigate against ASD. METHODS: Eight fresh-frozen human cadaveric spine specimens were instrumented with transforaminal lumbar interbody fusion (TLIF) cages at L3-4 and L4-5, and pedicle screws from L3 to S1. Bilateral SBs were applied at L2 and tightened around the rods extending above the L3 pedicle screws. After being mounted on a testing frame, the spines were loaded at L1 to 6 Nm in all 3 planes, i.e., flexion/extension, right and left lateral bending, and right and left axial rotation. Motion and intradiscal pressures (IDPs) at L2-3 were measured for 5 conditions: intact, instrumentation (L3-S1), band tension (BT) 30%, BT 50%, and BT 100%. RESULTS: There was significant increase in motion at L2-3 with L3-S1 instrumentation compared with the intact spine in flexion/extension (median 8.78°, range 4.07°-10.81°, vs median 7.27°, range 1.63°-9.66°; p = 0.016). When compared with instrumentation, BT 100% reduced motion at L2-3 in flexion/extension (median 8.78°, range 4.07°-10.81°, vs median 3.61°, range 1.11°-9.39°; p < 0.001) and lateral bending (median 6.58°, range 3.67°-8.59°, vs median 5.62°, range 3.28°-6.74°; p = 0.001). BT 50% reduced motion at L2-3 only in flexion/extension when compared with instrumentation (median 8.78°, range 4.07°-10.81°, vs median 5.91°, range 2.54°-10.59°; p = 0.027). There was no significant increase of motion at L1-2 with banding when compared with instrumentation, although an increase was seen from the intact spine with BT 100% in flexion/extension (median 5.14°, range 2.47°-9.73°, vs median 7.34°, range 4.22°-9.89°; p = 0.005). BT 100% significantly reduced IDP at L2-3 from 25.07 psi (range 2.41-48.08 psi) before tensioning to 19.46 psi (range -2.35 to 29.55 psi) after tensioning (p = 0.016). CONCLUSIONS: In this model, the addition of L2 SBs reduced motion and IDP at L2-3 after the L3-S1 instrumentation. There was no significant increase in motion at L1-2 in response to band tensioning compared with instrumentation alone. The application of SBs may have a clinical application in reducing the incidence of ASD.


Subject(s)
Spinal Fusion , Humans , Biomechanical Phenomena , Cadaver , Lumbar Vertebrae/surgery , Lumbar Vertebrae/physiology , Range of Motion, Articular/physiology , Rotation
2.
Iowa Orthop J ; 39(2): 9-19, 2019.
Article in English | MEDLINE | ID: mdl-32577102

ABSTRACT

Background: Calcium phosphate materials have been employed clinically as bone void fillers for several decades. These materials are most often provided in the form of small, porous granules that can be packed to fill the wide variety of size and shape of bony defects encountered. ReBOSSIS-85 (RB-85) is a synthetic bioresorbable bone void filler for the repair of bone defects with handling characteristics of glass wool-like (or cotton ball-like). The objective of this study is to evaluate the in vivo performance of RB-85 (test material), compared to a commercially available bone void filler, Mastergraft Putty (predicate material), when combined with bone marrow aspirate and iliac crest autograft, in an established posterolateral spine fusion rabbit model. Methods: One hundred fifty skeletally mature rabbits had a single level posterolateral fusion performed. Rabbits were implanted with iliac crest bone graft (ICBG), Mastergraft Putty™ plus ICBG, or one of 4 masses of ReBOSSIS-85 (0.2, 0.3, 0.45, or 0.6 g) plus ICBG. Plain films were taken weekly until euthanasia. Following euthanasia at 4, 8, and 12 weeks, the lumbar spine were tested by manual palpation. Spinal columns in the 12 week group were also subjected to non-destructive flexibility testing. MicroCT and histology were performed on a subset of each implant group at each euthanasia period. Results: Radiographic scoring of the fusion sites indicated a normal healing response in all test groups. Bilateral radiographic fusion rates for all test groups were 0% at 4 weeks; ICBG 43%, Mastergraft Putty 50%, RB-85-0.2g 0%, RB-85-0.3g 13%, RB-85-0.45g 38%, and RB-85-0.6g 63% at 8 weeks; and ICBG 50%, Mastergraft Putty 50%, RB-85-0.2g 0%, RB-85-0.3g 25%, RB-85-0.45g 36%, and RB-85-0.6g 50% at 12 weeks.Spine fusion was assessed by manual palpation of the treated motion segments. At 12 weeks, ICBG, MGP, and RB-85-0.6g were fused mechanically in at least 50% of the rabbits. All groups demonstrated significantly less range of motion in both flexion/extension, lateral bending, and axial rotation compared to normal unfused controls.Histopathology analysis of the fusion masses, in all test groups, indicated an expected normal response of mild inflammation with macrophage and multinucleated giant cell response to the graft material at 4 weeks and resolving by 12 weeks. Regardless of test article, new bone formation and graft resorption increased from 4 to 12 weeks post-op. Conclusions: This animal study has demonstrated the biocompatibility and normal healing features associated with the ReBOSSIS-85 bone graft (test material) when combined with autograft as an extender. ReBOSSIS-85 was more effective when a larger mass of test article was used in this study. Clinical Relevance: ReBOSSIS-85 can be used as an extender negating the need for large amounts of local or iliac crest bone in posterolateral fusions.


Subject(s)
Bone Substitutes/therapeutic use , Bone Transplantation , Calcium Phosphates/therapeutic use , Polylactic Acid-Polyglycolic Acid Copolymer/therapeutic use , Spinal Fusion/methods , Animals , Biomechanical Phenomena , Calcium Carbonate/therapeutic use , Ilium/transplantation , Lumbar Vertebrae/surgery , Male , Models, Animal , Rabbits
3.
J Neurosurg Spine ; 30(2): 184-192, 2018 11 02.
Article in English | MEDLINE | ID: mdl-30497219

ABSTRACT

OBJECTIVEProximal junctional kyphosis (PJK) and failure (PJF) are potentially catastrophic complications that result from abrupt changes in stress across rigid instrumented and mobile non-fused segments of the spine (transition zone) after adult spinal deformity surgery. Recently, data have indicated that extension (widening) of the transitional zone via use of proximal junctional (PJ) semi-rigid fixation can mitigate this complication. To assess the biomechanical effectiveness of 3 semi-rigid fixation constructs (compared to pedicle screw fixation alone), the authors performed cadaveric studies that measured the extent of PJ motion and intradiscal pressure changes (ΔIDP).METHODSTo measure flexibility and ΔIDP at the PJ segments, moments in flexion, extension, lateral bending (LB), and torsion were conducted in 13 fresh-frozen human cadaveric specimens. Five testing cycles were conducted, including intact (INT), T10-L2 pedicle screw-rod fixation alone (PSF), supplemental hybrid T9 Mersilene tape insertion (MT), hybrid T9 sublaminar band insertion (SLB1), and hybrid T8/T9 sublaminar band insertion (SLB2).RESULTSCompared to PSF, SLB1 significantly reduced flexibility at the level rostral to the upper-instrumented vertebral level (UIV+1) under moments in 3 directions (flexion, LB, and torsion, p ≤ 0.01). SLB2 significantly reduced motion in all directions at UIV+1 (flexion, extension, LB, torsion, p < 0.05) and at UIV+2 (LB, torsion, p ≤ 0.03). MT only reduced flexibility in extension at UIV+1 (p = 0.02). All 3 constructs revealed significant reductions in ΔIDP at UIV+1 in flexion (MT, SLB1, SLB2, p ≤ 0.02) and torsion (MT, SLB1, SLB2, p ≤ 0.05), while SLB1 and SLB2 significantly reduced ΔIDP in extension (SLB1, SLB2, p ≤ 0.02) and SLB2 reduced ΔIDP in LB (p = 0.05). At UIV+2, SLB2 similarly significantly reduced ΔIDP in extension, LB, and torsion (p ≤ 0.05).CONCLUSIONSCompared to MT, the SLB1 and SLB2 constructs significantly reduced flexibility and ΔIDP in various directions through the application of robust anteroposterior force vectors at UIV+1 and UIV+2. These findings indicate that semi-rigid sublaminar banding can most effectively expand the transition zone and mitigate stresses at the PJ levels of long-segment thoracolumbar constructs.


Subject(s)
Kyphosis/surgery , Lumbar Vertebrae/surgery , Postoperative Complications/surgery , Thoracic Vertebrae/surgery , Adult , Aged , Biomechanical Phenomena/physiology , Female , Humans , Male , Middle Aged , Pedicle Screws , Range of Motion, Articular/physiology , Risk Factors , Spinal Fusion/methods
4.
World Neurosurg ; 118: e414-e421, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30257297

ABSTRACT

BACKGROUND: The decompressive hemicraniectomy operation is highly effective in relieving refractory intracranial hypertension. However, one limitation of this treatment strategy is the requirement to perform a subsequent cranioplasty operation to reconstruct the skull defect-an expensive procedure with high complication rates. An implant that is capable of accommodated post-hemicraniectomy brain swelling, but also provides acceptable skull defect coverage after brain swelling abates, would theoretically eliminate the need for the cranioplasty operation. In an earlier report, the concept of using a thin, moveable plate implant for this purpose was introduced. METHODS: Measurements were obtained in a series of stroke patients to determine whether a plate offset from the skull by 5 mm would accommodate the observed post-hemicraniectomy brain swelling. The volume of brain swelling measured in all patients in the stroke series would be accommodated by a 5-mm offset plate. In the current report, we expanded our analysis to study brain swelling patterns in a different population of patients requiring a hemicraniectomy operation: those with traumatic brain injuries (TBI). RESULTS: We identified 56 patients with TBI and measured their postoperative brain herniation volumes. A moveable plate offset by 5 mm would create sufficient additional volume to accommodate the brain swelling measured in all but one patient. That patient had malignant intraoperative brain swelling and died the following day. CONCLUSIONS: These data suggest that a 5 mm offset plate will provide sufficient volume for brain expansion for almost all hemicraniectomy operations.


Subject(s)
Brain Edema/diagnostic imaging , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/surgery , Decompressive Craniectomy/trends , Intracranial Hypertension/diagnostic imaging , Surgical Flaps/trends , Adult , Aged , Aged, 80 and over , Brain Edema/etiology , Decompressive Craniectomy/adverse effects , Humans , Intracranial Hypertension/etiology , Middle Aged , Organ Size , Surgical Flaps/statistics & numerical data , Young Adult
5.
Iowa Orthop J ; 37: 193-198, 2017.
Article in English | MEDLINE | ID: mdl-28852357

ABSTRACT

INTRODUCTION: Spinal fusion surgery is an effective but costly treatment for select spinal pathology. Historically iliac crest bone graft (ICBG) has remained the gold standard for achieving successful arthrodesis. Given well-established morbidity autograft harvest, multiple bone graft replacements, void fillers, and extenders have been developed. The objective of this study was to evaluate the in vivo efficacy and safety of two mineralized collagen bone void filler materials similar in composition. Both bone void fillers were composed of hydroxyapatite (HA), tricalcium phosphate (TCP) and bovine collagen. The first test article (Bi-Ostetic bioactive glass foam or "45S5") also contained 45S5 bioactive glass particles while the second test article (Formagraft or "FG") did not. 45S5 and FG were combined with bone marrow aspirate and iliac crest autograft and compared to ICBG in an established posterolateral spine fusion rabbit model. MATERIALS AND METHODS: Sixty-nine mature New Zealand White rabbits were divided into 3 test cohorts: ICBG, 45S5, and FG. A Posterolateral fusion model previous validated was utilized to assess fusion efficacy. The test groups were evaluated for spine fusion rate, new bone formation, graft resorption and inflammatory response using radiographic, µCT, biomechanical and histological endpoints at 4, 8 and 12 weeks following implantation. RESULTS: There were 4 clinical complications unrelated to the graft materials and were evenly split between groups (ICBG graft harvest complications; hind limb mobility, chronic pain) and were euthanized. These omissions did not affect the overall outcome of the study. Radiographic scoring of the fusion sites indicated a normal healing response in all test groups, with no adverse reactions and similar progressions of new bone formation observed over time. All groups demonstrated significantly less range of motion in both flexion/extension and lateral bending compared to normal not-fused controls, which supports fusion results observed in the other endpoints. Fusion occurred earlier in the 45S5 group: ICBG 0%, FG 0%, and 45S5 20% at 4 weeks; ICBG 43%, FG 38%, and 45S5 50% at 8 weeks; and ICBG 50%, FG 56%, and 45S5 56% at 12 weeks. Histopathology analysis of the fusion masses, from each test article and time point, indicated an expected normal response for resorbable calcium phosphate (HA/TCP) and collagen graft material. Mild inflammation with macrophage and multinucleated giant cell response to the graft material was evident in all test groups. DISCUSSION: This study has confirmed the biocompatibility, safety, efficacy and bone healing characteristics of the HA-TCP collagen (with or without 45S5 bioactive glass) composites. The results show that the 3 test groups had equivalent long-term fusion performance and outcome at 12 weeks. However, the presence of 45S5 bioactive glass seemed to accelerate the fusion process as evidenced by the higher fusion rates at 4 and 8 weeks for the HA-TCP-collagen composite containing bioactive glass particles. The results also demonstrate that the HA-TCP-45S5 bioactive glass-collagen composite used as an extender closely mirrors the healing characteristics (i.e. amount and quality of bone) of the 100% autograft group.


Subject(s)
Bone Substitutes/therapeutic use , Bone Transplantation/methods , Calcium Phosphates/therapeutic use , Ceramics/therapeutic use , Lumbar Vertebrae/surgery , Spinal Fusion/methods , Animals , Glass , Osteogenesis/physiology , Rabbits , Treatment Outcome
6.
J Spinal Cord Med ; 40(3): 346-360, 2017 05.
Article in English | MEDLINE | ID: mdl-27759502

ABSTRACT

OBJECTIVE: To develop a large animal model of spinal cord injury (SCI), for use in translational studies of spinal cord stimulation (SCS) in the treatment of spasticity. We seek to establish thresholds for the SCS parameters associated with reduction of post-SCI spasticity in the pelvic limbs, with implications for patients. STUDY DESIGN: The weight-drop method was used to create a moderate SCI in adult sheep, leading to mild spasticity in the pelvic limbs. Electrodes for electromyography (EMG) and an epidural spinal cord stimulator were then implanted. Behavioral and electrophysiological data were taken during treadmill ambulation in six animals, and in one animal with and without SCS at 0.1, 0.3, 0.5, and 0.9 V. SETTING: All surgical procedures were carried out at the University of Iowa. The gait measurements were made at Iowa State University. MATERIAL AND METHODS: Nine adult female sheep were used in these institutionally approved protocols. Six of them were trained in treadmill ambulation prior to SCI surgeries, and underwent gait analysis pre- and post-SCI. Stretch reflex and H-reflex measurements were also made in conscious animals. RESULTS: Gait analysis revealed repeatable quantitative differences in 20% of the key kinematic parameters of the sheep, pre- and post-SCI. Hock joint angular velocity increased toward the normal pre-injury baseline in the animal with SCS at 0.9 V. CONCLUSION: The ovine model is workable as a large animal surrogate suitable for translational studies of novel SCS therapies aimed at relieving spasticity in patients with SCI.


Subject(s)
Disease Models, Animal , Sheep/physiology , Spinal Cord Injuries/physiopathology , Animals , Electric Stimulation Therapy/methods , Female , Gait , H-Reflex , Muscle Contraction , Reflex, Stretch , Spinal Cord Injuries/etiology , Spinal Cord Injuries/therapy , Walking
7.
Iowa Orthop J ; 35: 13-9, 2015.
Article in English | MEDLINE | ID: mdl-26361439

ABSTRACT

BACKGROUND: The medial patellofemoral ligament is the primary soft-tissue restraint to lateral patella translation. Medial patellofemoral ligament reconstruction has become a viable surgical option to provide patellar stability in patients with recurrent instability. The primary goal of this study was to determine the effect of medial patellofemoral ligament reconstruction on the lateral force-displacement behavior of the patella using finite element analyses. METHODS: A finite element model of the knee was created using cadaveric image data. Experimental testing was performed to validate the computational model. After validation, the model was modified to study the effect of various medial patellofemoral ligament reconstruction insertion sites, allowing comparison of patellofemoral contact force and pressure. RESULTS: For the intact anatomic model, the lateral restraining force was 80.0 N with a corresponding patellar contact area of 54.97 mm(2). For the anatomic reconstructed medial patellofemoral ligament model, the lateral restraining force increased to 148.9 N with a contact area of 71.78 mm(2). This compared favorably to the corresponding experimental study. The force required to laterally displace the patella increased when the femoral insertion site was moved anteriorly or distally. The lateral restraining force decreased when the femoral insertion site moved proximally and the patellar insertion site moved either proximal or distal by 5 mm. CONCLUSION: The line of action was altered with insertion site position, which in turn changed the amount of force it took to displace the patella laterally. Considering the model constraints, an anterior femoral attachment may over constrain the patella and increase cartilage wear due to increase contact area and restraining force. CLINICAL RELEVANCE: A malpositioned femoral tunnel in MPFL reconstruction could increase restraining forces and PF contact pressure, thus it is suggested to use intra-operative fluoroscopy to confirm correct tunnel placement.


Subject(s)
Finite Element Analysis , Patellar Dislocation/surgery , Patellar Ligament/surgery , Plastic Surgery Procedures/methods , Tensile Strength/physiology , Aged, 80 and over , Biomechanical Phenomena/physiology , Cadaver , Female , Humans , Male , Middle Aged , Patellofemoral Joint/surgery , Reproducibility of Results , Stress, Mechanical
8.
J Clin Neurosci ; 22(5): 883-8, 2015 May.
Article in English | MEDLINE | ID: mdl-25769251

ABSTRACT

The current project investigates the role of vertebroplasty in supplementing short segment (SS) posterior instrumentation, only one level above and below a fracture. In the treatment of thoracolumbar burst fractures, long segment (LS) posterior instrumentation two levels above and below the fracture level has been used. In our study, burst fractures were produced at L1 in eight fresh frozen human cadaveric spines. The spines were then tested in three conditions: 1) intact, 2) after LS (T11-L3), 3) SS (T12-L2) instrumentation with pedicle screws and rods, and 4) short segment instrumentation plus cement augmentation of the fracture level (SSC). LS instrumentation was found to significantly reduce the motion at the instrumented level (T12-L2) as well as the levels immediately adjacent in flexion, extension and lateral bending. Similarly, SSC augmentation was found to significantly reduce the motion compared to intact at T12-L2 but still maintained the adjacent level motion. However, SS instrumentation alone did not significantly reduce the motion at T12-L2 except for left lateral bending. While LS instrumentation remains the most stable construct, SS instrumentation augmented with vertebroplasty at the fracture level increases rigidity in flexion, extension and right lateral bending beyond SS instrumentation alone.


Subject(s)
Lumbar Vertebrae/injuries , Lumbar Vertebrae/surgery , Pedicle Screws , Spinal Fractures/surgery , Thoracic Vertebrae/injuries , Thoracic Vertebrae/surgery , Vertebroplasty/instrumentation , Biomechanical Phenomena , Bone Cements , Cadaver , Humans , Muscle Rigidity , Radiography , Range of Motion, Articular , Spinal Fractures/diagnostic imaging , Vertebroplasty/methods
9.
Iowa Orthop J ; 34: 137-43, 2014.
Article in English | MEDLINE | ID: mdl-25328473

ABSTRACT

INTRODUCTION: Animal models are often used to make the transition from scientific concepts to clinical applications. The sheep model has emerged as an important model in spine biomechanics. Although there are several experimental biomechanical studies of the sheep cervical spine, only a limited number of computational models have been developed. Therefore, the objective of this study was to develop and validate a C2-C7 sheep cervical spine finite element (FE) model to study the biomechanics of the normal sheep cervical spine. METHODS: The model was based on anatomy defined using medical images and included nonlinear material properties to capture the high flexibility and large neutral zone of the sheep cervical spine. The model was validated using comprehensive experimental flexibility testing. Ten adult sheep cervical spines, from C2-C7, were used to experimentally ascertain overall and segmental flexibility to ±2 Nm in flexion-extension, lateral bending, and axial rotation. RESULTS: The ranges of motion predicted by the computational model were within one standard deviation of the respective experimental motions throughout the load cycle, with the exception of extension and lateral bending. The model over- and under predicted the peak motions in extension and lateral bending, respectively. Nevertheless, the model closely represents the range of motion and flexibility of the sheep cervical spine. DISCUSSION: This is the first multilevel model of the sheep cervical spine. The validated model affords additional biomechanical insight into the intact sheep cervical spine that cannot be easily determined experimentally. The model can be used to study various surgical techniques, instrumentation, and device placement, providing researchers and clinicians insight that is difficult, if not impossible, to gain experimentally.


Subject(s)
Cervical Vertebrae/physiology , Range of Motion, Articular/physiology , Animals , Biomechanical Phenomena/physiology , Finite Element Analysis , Models, Animal , Rotation , Sheep
10.
J Neurosurg Spine ; 21(4): 577-81, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25084029

ABSTRACT

OBJECT: The objective of this study was to evaluate the biomechanical properties of lateral instrumentation compared with short- and long-segment pedicle screw constructs following an L-1 corpectomy and reconstruction with an expandable cage. METHODS: Eight human cadaveric T10-L4 spines underwent an L-1 corpectomy followed by placement of an expandable cage. The spines then underwent placement of lateral instrumentation consisting of 4 monoaxial screws and 2 rods with 2 cross-connectors, short-segment pedicle screw fixation involving 1 level above and below the corpectomy, and long-segment pedicle screw fixation (2 levels above and below). The order of instrumentation was randomized in the 8 specimens. Testing was conducted for each fixation technique. The spines were tested with a pure moment of 6 Nm in all 6 degrees of freedom (flexion, extension, right and left lateral bending, and right and left axial rotation). RESULTS: In flexion, extension, and left/right lateral bending, posterior long-segment instrumentation had significantly less motion compared with the intact state. Additionally, posterior long-segment instrumentation was significantly more rigid than short-segment and lateral instrumentation in flexion, extension, and left/right lateral bending. In axial rotation, the posterior long-segment construct as well as lateral instrumentation were not significantly more rigid than the intact state. The posterior long-segment construct was the most rigid in all 6 degrees of freedom. CONCLUSIONS: In the setting of highly unstable fractures requiring anterior reconstruction, and involving all 3 columns, long-segment posterior pedicle screw constructs are the most rigid.


Subject(s)
Bone Screws , Lumbar Vertebrae/surgery , Spinal Fusion/instrumentation , Thoracic Vertebrae/surgery , Aged, 80 and over , Biomechanical Phenomena , Cadaver , Female , Humans , Male , Rotation , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...