Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Clin Biomech (Bristol, Avon) ; 100: 105801, 2022 12.
Article in English | MEDLINE | ID: mdl-36327548

ABSTRACT

BACKGROUND: Condyle-spanning plate-screw constructs have shown potential to lower the risks of femoral refractures after the healing of a primary Vancouver type B1 periprosthetic femoral fracture. Limited information exists to show how osteoporosis (a risk factor for periprosthetic femoral fractures) may affect the plate fixation during activities of daily living. METHODS: Using total hip arthroplasty and plate-implanted finite element models of three osteoporotic femurs, this study simulated physiological loads of three activities of daily living, as well as osteoporosis associated muscle weakening, and compared the calculated stress/strain, load transfer and local stiffness with experimentally validated models of three healthy femurs. Two plating systems and two construct lengths (a diaphyseal construct and a condyle-spanning construct) were modeled. FINDINGS: Osteoporotic femurs showed higher bone strain (21.9%) and higher peak plate stress (144.3%) as compared with healthy femurs. Compared with shorter diaphyseal constructs, condyle-spanning constructs of two plating systems reduced bone strains in both healthy and osteoporotic femurs (both applying 'the normal' and 'the weakened muscle forces') around the most distal diaphyseal screw and in the distal metaphysis, both locations where secondary fractures are typically reported. The lowered resultant compressive force and the increased local compressive stiffness in the distal diaphysis and metaphysis may be associated with strain reductions via condyle-spanning constructs. INTERPRETATION: Strain reductions in condyle-spanning constructs agreed with the clinically reported lowered risks of femoral refractures in the distal diaphysis and metaphysis. Multiple condylar screws may mitigate the concentrated strains in the lateral condyle, especially in osteoporotic femurs.


Subject(s)
Activities of Daily Living , Femoral Fractures , Humans , Bone Density , Femoral Fractures/surgery
2.
J Biomech Eng ; 144(3)2022 03 01.
Article in English | MEDLINE | ID: mdl-34505126

ABSTRACT

Plate fractures after fixation of a Vancouver Type B1 periprosthetic femoral fracture (PFF) are difficult to treat and could lead to severe disability. However, due to the lack of direct measurement of in vivo performance of the PFF fixation construct, it is unknown whether current standard mechanical tests or previous experimental and computational studies have appropriately reproduced the in vivo mechanics of the plate. To provide a basis for the evaluation and development of appropriate mechanical tests for assessment of plate fracture risk, this study applied loads of common activities of daily living (ADLs) to implanted femur finite element (FE) models with PFF fixation constructs with an existing or a healed PFF. Based on FE simulated plate mechanics, the standard four-point-bend test adequately matched the stress state and the resultant bending moment in the plate as compared with femur models with an existing PFF. In addition, the newly developed constrained three-point-bend tests were able to reproduce plate stresses in models with a healed PFF. Furthermore, a combined bending and compression cadaveric test was appropriate for risk assessment including both plate fracture and screw loosening after the complete healing of PFF. The result of this study provides the means for combined experimental and computational preclinical evaluation of PFF fixation constructs.


Subject(s)
Femoral Fractures , Periprosthetic Fractures , Activities of Daily Living , Bone Plates , Femoral Fractures/surgery , Femur , Fracture Fixation, Internal , Humans , Mechanical Tests , Periprosthetic Fractures/surgery
3.
J Mech Behav Biomed Mater ; 125: 104960, 2022 01.
Article in English | MEDLINE | ID: mdl-34794043

ABSTRACT

Secondary femoral fractures after the successful plate-screw fixation of a primary Vancouver type B1 periprosthetic femoral fracture (PFF) have been associated with the altered state of stress/strain in the femur as the result of plating. The laterally implanted condyle-spanning plate-screw constructs have shown promises clinically in avoiding secondary bone and implant failures as compared with shorter diaphyseal plates. Though the condyle-spanning plating has been hypothesized to avoid stress concentration in the femoral diaphysis through increasing the working length of the plate, biomechanical evidence is lacking on how plate length may impact the stress/strain state of the implanted femur. Through developing and experimentally validating finite element (FE) models of 3 cadaveric femurs, this study investigated the impact of plating on bone strains, load transfer and local stiffness, which were compared between FE models of 2 different plating systems that each had a diaphyseal configuration and a condyle-spanning configuration. Under simulated gait-loading, the condyle-spanning constructs of both plating systems were shown to lower the bone strains around the distal fixation screws (up to 24.8% reduction in maximum principal strain and 26.6% reduction in minimum principal strain) and in the distal metaphyseal shaft of the femur (up to 15.9% and 25.7% reductions in maximum and minimum principal strains, respectively), where secondary bone fractures have been typically reported. In the distal diaphyseal and metaphyseal shaft of femur, FE models of the condyle-spanning constructs were shown to increase the local compressive stiffness (up to 152.9% increases under simulated gait-loading) and decrease the transfer of compressive load (37.1% decreases under simulated gait-loading), which may be indicative of the lowered risks of bone damage.


Subject(s)
Femoral Fractures , Femur , Bone Plates , Femoral Fractures/surgery , Femur/surgery , Fracture Fixation, Internal , Humans , Lower Extremity
4.
J Biomech ; 120: 110363, 2021 05 07.
Article in English | MEDLINE | ID: mdl-33725522

ABSTRACT

Femoral strain is indicative of the potential for bone remodeling (strain energy density, SED) and periprosthetic femoral fracture (magnitude of principal strains) after total hip arthroplasty (THA). Previous modeling studies have evaluated femoral strains in THA-implanted femurs under gait loads including both physiological hip contact force and femoral muscle forces. However, experimental replication of the complex muscle forces during activities of daily living (ADLs) is difficult for in vitro assessment of femoral implant or fixation hardware. Alternatively, cadaveric tests using simplified loading configurations have been developed to assess post-THA bone mechanics, although no current studies have demonstrated simplified loading configurations used in mechanical tests may simulate the physiological femoral strains under ADL loads. Using an optimization approach integrated with finite element analysis, this study developed axial compression and combined axial compression and torque testing configurations for three common ADLs (gait, stair-descent and sit-to-stand) via matching the SED profile of the femur in THA-implanted models of three specimens. The optimized simplified-loading models showed good agreement in predicting bone remodeling stimuli (post-THA change in SED per unit mass) and fatigue regions as compared with the ADL-loading models, as well as other modeling and clinical studies. The optimized simplified test configurations can provide a physiological-loading based pre-clinical platform for the evaluation of implant/fixation devices of the femur.


Subject(s)
Activities of Daily Living , Femur , Biomechanical Phenomena , Finite Element Analysis , Humans , Stress, Mechanical , Torque
5.
Eur Radiol ; 27(2): 474-482, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27236815

ABSTRACT

OBJECTIVES: Evaluate the effects of aging on healthy Achilles tendon and aponeurosis shear wave speed (SWS), a quantitative metric which reflects tissue elasticity. METHODS: Shear wave elastography was used to measure spatial variations in Achilles tendon SWS in healthy young (n = 15, 25 ± 4 years), middle-aged (n = 10, 49 ± 4 years) and older (n = 10, 68 ± 5 years) adults. SWS was separately measured in the free Achilles tendon, soleus aponeurosis and gastrocnemius aponeurosis in resting (R), stretched (dorsiflexed 15° from R) and slack (plantarflexed 15° from R) postures. RESULTS: SWS significantly increased with stretch and varied with age in all tendon regions. Slack free tendon SWS was significantly higher in older adults than young adults (p = 0.025). However, stretched soleus aponeurosis SWS was significantly lower in older adults than young adults (p = 0.01). Stretched gastrocnemius aponeurosis SWS was significantly lower in both middle-aged (p = 0.003) and older (p = 0.001) adults, relative to younger adults. CONCLUSION: These results suggest that aging alters spatial variations in Achilles tendon elasticity, which could alter deformations within the triceps surae muscle-tendon units, thus affecting injury potential. The observed location- and posture-dependent variations highlight the importance of controlling ankle posture and imaging location when using shear wave approaches clinically to evaluate tendon disorders. KEY POINTS: • Shear wave elastography shows promise as a clinical quantitative ultrasound-based technique. • Aging induces location-dependent changes in Achilles tendon shear wave speed. • Spatial and postural dependence necessitates careful integration of this approach clinically.


Subject(s)
Achilles Tendon/diagnostic imaging , Achilles Tendon/physiology , Aging/physiology , Elasticity/physiology , Ultrasonography/methods , Adult , Aged , Ankle Joint/diagnostic imaging , Elasticity Imaging Techniques/methods , Female , Humans , Male , Middle Aged , Muscle, Skeletal/diagnostic imaging , Young Adult
6.
Ultrasound Med Biol ; 41(10): 2722-30, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26215492

ABSTRACT

The purpose of this study was to assess the potential for ultrasound shear wave elastography (SWE) to measure tissue elasticity and ultimate stress in both intact and healing tendons. The lateral gastrocnemius (Achilles) tendons of 41 New Zealand white rabbits were surgically severed and repaired with growth factor coated sutures. SWE imaging was used to measure shear wave speed (SWS) in both the medial and lateral tendons pre-surgery, and at 2 and 4 wk post-surgery. Rabbits were euthanized at 4 wk, and both medial and lateral tendons underwent mechanical testing to failure. SWS significantly (p < 0.001) decreased an average of 17% between the intact and post-surgical state across all tendons. SWS was significantly (p < 0.001) correlated with both the tendon elastic modulus (r = 0.52) and ultimate stress (r = 0.58). Thus, ultrasound SWE is a potentially promising non-invasive technology for quantitatively assessing the mechanical integrity of pre-operative and post-operative tendons.


Subject(s)
Models, Biological , Tendon Injuries/diagnostic imaging , Tendon Injuries/physiopathology , Tendons/diagnostic imaging , Tendons/physiology , Ultrasonography/methods , Animals , Computer Simulation , Elastic Modulus , Female , Image Interpretation, Computer-Assisted/methods , Male , Rabbits , Reproducibility of Results , Scattering, Radiation , Sensitivity and Specificity , Shear Strength , Tendon Injuries/surgery , Tendons/surgery , Tensile Strength , Ultrasonic Waves , Wound Healing/physiology
7.
Physiol Meas ; 36(7): 1485-96, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26020294

ABSTRACT

The purpose of this study was to investigate spatial variations in measured wave speed in the relaxed and stretched Achilles tendons of young and middle-aged adults. Wave speed was measured from the distal Achilles tendon, soleus aponeurosis, medial gastrocnemius aponeurosis and medial gastrocnemius muscle in healthy young (n = 15, aged 25 ± 4 years) and middle-aged (n = 10, aged 49 ± 4 years) adults in resting, dorsiflexed and plantarflexed postures. In both age groups, Achilles tendon wave speed decreased proximally, with the lowest wave speed measured in the gastrocnemius aponeurosis. Measured wave speed increased with passive dorsiflexion, reflecting the strain-stiffening behavior of tendons. There were no significant aging effects on wave speed in the free tendon or soleus aponeurosis. However, a significant, inverse relationship between gastrocnemius aponeurosis wave speed and age was observed in the dorsiflexed posture. We also observed significantly lower wave speeds in the gastrocnemius muscles of middle-aged adults when compared with young adults. These results suggest that Achilles tendon compliance increases in a distal-to-proximal pattern, with middle-aged adults exhibiting greater compliance in the distal gastrocnemius muscle and tendinous structures. An age-related change in the spatial variation in Achilles tendon compliance could affect localized tissue deformation patterns and injury potential within the triceps surae muscle-tendon units.


Subject(s)
Achilles Tendon/diagnostic imaging , Achilles Tendon/physiology , Aging/physiology , Adult , Female , Humans , Male , Middle Aged , Muscle, Skeletal/physiology , Posture/physiology , Rest/physiology , Signal Processing, Computer-Assisted , Ultrasonography
8.
J Exp Orthop ; 2(1): 5, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26914873

ABSTRACT

BACKGROUND: Intratendinous injections may have important effects on the properties of collagen microarchitecture, morphology, and subsequent mechanical properties of the injected tendon. The purpose of this study was to examine the effects of intratendinous PRP injections; the injectant retention within tendons, the distribution of intratendinous injectant, and whether intratendinous injection or needle fenestration alters tendon morphology or mechanics. DESIGN: Controlled Laboratory Study. INTERVENTIONS: In the first part of the study, 18 lamb extensor tendons were selected to receive methylene blue-containing PRP injection (PRP/MB), methylene blue only injection (MB), or needle fenestration. The volume of retained injectant was measured and injectant distribution and tendon morphology were examined microscopically. In the second portion of the study, 18 porcine flexor tendons were divided into control, needle fenestration, or saline injection groups. Young's Modulus was then determined for each tendon under 0-4% strain. MAIN OUTCOME MEASURES: 1) Injectant volume retained; 2) Injectant distribution; 3) Post-injection/fenestration alterations in morphology, biomechanics. RESULTS: Intratendinous injectant is retained within the tendon. The difference between PRP and PRP/MB groups was not significant (p = 0.78). Intratendinous spread of the injectant solution within the tendon occurs primarily in the proximodistal direction, with very little cross-sectional penetration. Intratendinous injections resulted in microscopic morphology disruption (e.g., separation and disorganization of both the collagen bundles and cellular distribution). There were significant differences in Young's Modulus between control (Ectrl = 2415.48) and injected tendons (Einj = 1753.45) at 4% strain (p = 0.01). There were no differences in Young's Modulus between fenestrated and control tendons. CONCLUSIONS: Intratendinous PRP injections are retained within the tendon, and primarily distributes longitudinally with minimal cross-sectional spread. Intratendinous injections may alter tendon morphology and mechanics.

9.
J Biomech ; 47(11): 2685-92, 2014 Aug 22.
Article in English | MEDLINE | ID: mdl-24933528

ABSTRACT

Supersonic shear imaging (SSI) is an ultrasound imaging modality that can provide insight into tissue mechanics by measuring shear wave propagation speed, a property that depends on tissue elasticity. SSI has previously been used to characterize the increase in Achilles tendon shear wave speed that occurs with loading, an effect attributable to the strain-stiffening behavior of the tissue. However, little is known about how shear wave speed varies spatially, which is important, given the anatomical variation that occurs between the calcaneus insertion and the gastrocnemius musculotendon junction. The purpose of this study was to investigate spatial variations in shear wave speed along medial and lateral paths of the Achilles tendon for three different ankle postures: resting ankle angle (R, i.e. neutral), plantarflexed (P; R - 15°), and dorsiflexed (D; R+15°). We observed significant spatial and posture variations in tendon shear wave speed in ten healthy young adults. Shear wave speeds in the Achilles free tendon averaged 12 ± 1.2m/s in a resting position, but decreased to 7.2 ± 1.8m/s with passive plantarflexion. Distal tendon shear wave speeds often reached the maximum tracking limit (16.3m/s) of the system when the ankle was in the passively dorsiflexed posture (+15° from R). At a fixed posture, shear wave speeds decreased significantly from the free tendon to the gastrocnemius musculotendon junction, with slightly higher speeds measured on the medial side than on the lateral side. Shear wave speeds were only weakly correlated with the thickness and depth of the tendon, suggesting that the distal-to-proximal variations may reflect greater compliance in the aponeurosis relative to the free tendon. The results highlight the importance of considering both limb posture and transducer positioning when using SSI for biomechanical and clinical assessments of the Achilles tendon.


Subject(s)
Achilles Tendon/diagnostic imaging , Ankle Joint/diagnostic imaging , Adult , Female , Humans , Male , Muscle, Skeletal/physiology , Posture , Ultrasonography , Young Adult
10.
Ultrasound Med Biol ; 40(1): 158-67, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24210863

ABSTRACT

Supersonic shear imaging (SSI) is evaluated as a means of visualizing changes in regional tendon elasticity caused by partial tears in a porcine model. Thirty digital flexor tendons were cut to 25% (n = 10), 50% (n = 10) and 75% (n = 10) of the tendon thickness along the deep surface. Tendon elasticity was mapped left of, centered on and right of the tear site before and after tearing from 0% to 2% strain. Shear wave speed increased at 1% (p < 0.05) and 2% (p < 0.001) strain for all regions. Deep surface shear wave speed decreased in the 25%, 50% and 75% tears (p < 0.05 and p < 0.001). Computational tendon tear models were also created to investigate regional changes in strain resulting from a tear. In the computational models, strain on the deep surface decreased progressively with increasing tear size. Visualization of tendon shear wave speed was achieved in normal and partially torn tendons, indicating the potential of SSI to add tendon shear wave speed to traditional morphologic assessment of partial tears, which may improve assessment of tendon health.


Subject(s)
Disease Models, Animal , Elasticity Imaging Techniques/methods , Image Interpretation, Computer-Assisted/methods , Tendon Injuries/diagnostic imaging , Tendon Injuries/physiopathology , Tendons/diagnostic imaging , Tendons/physiopathology , Animals , Elastic Modulus , Humans , In Vitro Techniques , Reproducibility of Results , Rupture/diagnostic imaging , Rupture/physiopathology , Sensitivity and Specificity , Stress, Mechanical , Swine
11.
Crit Rev Biomed Eng ; 41(1): 1-19, 2013.
Article in English | MEDLINE | ID: mdl-23510006

ABSTRACT

Ultrasound elastography is an emerging set of imaging modalities used to image tissue elasticity and are often referred to as virtual palpation. These techniques have proven effective in detecting and assessing many different pathologies, because tissue mechanical changes often correlate with tissue pathological changes. This article reviews the principles of ultrasound elastography, many of the ultrasound-based techniques, and popular clinical applications. Originally, elastography was a technique that imaged tissue strain by comparing pre- and postcompression ultrasound images. However, new techniques have been developed that use different excitation methods such as external vibration or acoustic radiation force. Some techniques track transient phenomena such as shear waves to quantitatively measure tissue elasticity. Clinical use of elastography is increasing, with applications including lesion detection and classification, fibrosis staging, treatment monitoring, vascular imaging, and musculoskeletal applications.


Subject(s)
Elasticity Imaging Techniques/instrumentation , Elasticity Imaging Techniques/methods , Animals , Biomechanical Phenomena , Humans
12.
Med Phys ; 39(11): 6692-700, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23127063

ABSTRACT

PURPOSE: Electrode vibration elastography is a new shear wave imaging technique that can be used to visualize thermal ablation zones. Prior work has shown the ability of electrode vibration elastography to delineate radiofrequency ablations; however, there has been no previous study of delineation of microwave ablations or radiological-pathological correlations using multiple observers. METHODS: Radiofrequency and microwave ablations were formed in ex vivo bovine liver tissue. Their visualization was compared on shear wave velocity and maximum displacement images. Ablation dimensions were compared to gross pathology. Elastographic imaging and gross pathology overlap and interobserver variability were quantified using similarity measures. RESULTS: Elastographic imaging correlated with gross pathology. Correlation of area estimates was better in radiofrequency than in microwave ablations, with Pearson coefficients of 0.79 and 0.54 on shear wave velocity images and 0.90 and 0.70 on maximum displacement images for radiofrequency and microwave ablations, respectively. The absolute relative difference in area between elastographic imaging and gross pathology was 18.9% and 22.9% on shear wave velocity images and 16.0% and 23.1% on maximum displacement images for radiofrequency and microwave ablations, respectively. CONCLUSIONS: Statistically significant radiological-pathological correlation was observed in this study, but correlation coefficients were lower than other modulus imaging techniques, most notably in microwave ablations. Observers provided similar delineations for most thermal ablations. These results suggest that electrode vibration elastography is capable of imaging thermal ablations, but refinement of the technique may be necessary before it can be used to monitor thermal ablation procedures clinically.


Subject(s)
Ablation Techniques/methods , Elasticity Imaging Techniques/methods , Microwaves/therapeutic use , Vibration , Animals , Cattle , Elasticity Imaging Techniques/instrumentation , Electrodes , Liver/diagnostic imaging , Liver/radiation effects , Observer Variation
13.
Phys Med Biol ; 57(8): 2273-86, 2012 Apr 21.
Article in English | MEDLINE | ID: mdl-22459948

ABSTRACT

Recent advances in elastography have provided several imaging modalities capable of quantifying the elasticity of tissue, an intrinsic tissue property. This information is useful for determining tumour margins and may also be useful for diagnosing specific tumour types. In this study, we used dynamic compression testing to quantify the viscoelastic properties of 16 human hepatic primary and secondary malignancies and their corresponding background tissue obtained following surgical resection. Two additional backgrounds were also tested. An analysis of the background tissue showed that F4-graded fibrotic liver tissue was significantly stiffer than F0-graded tissue, with a modulus contrast of 4:1. Steatotic liver tissue was slightly stiffer than normal liver tissue, but not significantly so. The tumour-to-background storage modulus contrast of hepatocellular carcinomas, a primary tumour, was approximately 1:1, and the contrast decreased with increasing fibrosis grade of the background tissue. Ramp testing showed that the background stiffness increased faster than the malignant tissue. Conversely, secondary tumours were typically much stiffer than the surrounding background, with a tumour-to-background contrast of 10:1 for colon metastases and 10:1 for cholangiocarcinomas. Ramp testing showed that colon metastases stiffened faster than their corresponding backgrounds. These data have provided insights into the mechanical properties of specific tumour types, which may prove beneficial as the use of quantitative stiffness imaging increases.


Subject(s)
Compressive Strength , Elasticity , Liver Neoplasms/pathology , Biomechanical Phenomena , Fatty Liver/complications , Humans , Liver Cirrhosis/complications , Liver Neoplasms/complications , Liver Neoplasms/secondary , Liver Neoplasms/surgery , Stress, Mechanical , Viscosity
14.
Article in English | MEDLINE | ID: mdl-22293748

ABSTRACT

Thermal ablation procedures are commonly used to treat hepatic cancers and accurate ablation representation on shear wave velocity images is crucial to ensure complete treatment of the malignant target. Electrode vibration elastography is a shear wave imaging technique recently developed to monitor thermal ablation extent during treatment procedures. Previous work has shown good lateral boundary delineation of ablated volumes, but axial delineation was more ambiguous, which may have resulted from the assumption of lateral shear wave propagation. In this work, we assume both lateral and axial wave propagation and compare wave velocity images to those assuming only lateral shear wave propagation in finite element simulations, tissue-mimicking phantoms, and bovine liver tissue. Our results show that assuming bidirectional wave propagation minimizes artifacts above and below ablated volumes, yielding a more accurate representation of the ablated region on shear wave velocity images. Area overestimation was reduced from 13.4% to 3.6% in a stiff-inclusion tissue-mimicking phantom and from 9.1% to 0.8% in a radio-frequency ablation in bovine liver tissue. More accurate ablation representation during ablation procedures increases the likelihood of complete treatment of the malignant target, decreasing tumor recurrence.


Subject(s)
Elasticity Imaging Techniques/methods , Laser Therapy/methods , Liver/diagnostic imaging , Liver/surgery , Signal Processing, Computer-Assisted , Surgery, Computer-Assisted/methods , Animals , Artifacts , Cattle , Computer Simulation , Elasticity Imaging Techniques/instrumentation , Finite Element Analysis , Image Processing, Computer-Assisted , Phantoms, Imaging , Vibration
15.
IEEE Trans Biomed Eng ; 59(3): 728-35, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22167553

ABSTRACT

Elastographic imaging can be used to monitor ablation procedures; however, confident and clear determination of the ablation boundary is essential to ensure complete treatment of the pathological target. To investigate the potential for ablation boundary representation on elastographic images, local variations in the viscoelastic properties in radiofrequency-ablated regions that were formed in vivo in porcine liver tissue were quantified using dynamic indentation. Spatial stiffness maps were then correlated to stained histology, the gold standard for the determination of the ablation periphery or boundary. Regions of interest in 11 radiofrequency ablation samples were indented at 18-24 locations each, including the central zone of complete necrosis and more peripheral transition zones including normal tissue. Storage modulus and the rate of stiffening were both greatest in the central ablation zone and decreased with radial distance away from the center. The storage modulus and modulus contrast at the ablation outer transition zone boundary were 3.1 ± 1.0 kPa and 1.6 ± 0.4, respectively, and 36.2 ± 9.1 kPa and 18.3 ± 5.5 at the condensation boundary within the ablation zone. Elastographic imaging modalities were then compared to gross pathology in ex vivo bovine liver tissue. Area estimated from strain, shear-wave velocity, and gross pathology images were 470, 560, and 574 mm(2), respectively, and ablation widths were 19.4, 20.7, and 23.0 mm. This study has provided insights into spatial stiffness distributions within radiofrequency ablations and suggests that low stiffness contrast on the ablation periphery leads to the observed underestimation of ablation extent on elastographic images.


Subject(s)
Catheter Ablation , Elasticity Imaging Techniques/methods , Liver/surgery , Algorithms , Animals , Elastic Modulus , Female , Image Processing, Computer-Assisted , Models, Animal , Necrosis , Stress, Mechanical , Swine
16.
IEEE Trans Med Imaging ; 30(3): 666-78, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21075719

ABSTRACT

This paper presents a new shear wave velocity imaging technique to monitor radio-frequency and microwave ablation procedures, coined electrode vibration elastography. A piezoelectric actuator attached to an ablation needle is transiently vibrated to generate shear waves that are tracked at high frame rates. The time-to-peak algorithm is used to reconstruct the shear wave velocity and thereby the shear modulus variations. The feasibility of electrode vibration elastography is demonstrated using finite element models and ultrasound simulations, tissue-mimicking phantoms simulating fully (phantom 1) and partially ablated (phantom 2) regions, and an ex vivo bovine liver ablation experiment. In phantom experiments, good boundary delineation was observed. Shear wave velocity estimates were within 7% of mechanical measurements in phantom 1 and within 17% in phantom 2. Good boundary delineation was also demonstrated in the ex vivo experiment. The shear wave velocity estimates inside the ablated region were higher than mechanical testing estimates, but estimates in the untreated tissue were within 20% of mechanical measurements. A comparison of electrode vibration elastography and electrode displacement elastography showed the complementary information that they can provide. Electrode vibration elastography shows promise as an imaging modality that provides ablation boundary delineation and quantitative information during ablation procedures.


Subject(s)
Elasticity Imaging Techniques/methods , Hepatectomy/methods , Image Interpretation, Computer-Assisted/methods , Liver/diagnostic imaging , Liver/surgery , Surgery, Computer-Assisted/methods , Animals , Cattle , Elasticity Imaging Techniques/instrumentation , Electrodes , Hepatectomy/instrumentation , Image Enhancement/methods , Phantoms, Imaging , Reproducibility of Results , Sensitivity and Specificity , Shear Strength , Surgery, Computer-Assisted/instrumentation , Vibration
17.
Phys Med Biol ; 55(8): 2281-306, 2010 Apr 21.
Article in English | MEDLINE | ID: mdl-20354279

ABSTRACT

The feasibility of using ultrasound-based elastic modulus imaging to visualize thermal ablation zones in an in vivo porcine model is reported. Elastic modulus images of soft tissues are estimated as an inverse optimization problem. Ultrasonically measured displacement data are utilized as inputs to determine an elastic modulus distribution that provides the best match to this displacement field. A total of 14 in vivo thermal ablation zones were investigated in this study. To determine the accuracy of delineation of each thermal ablation zone using elastic modulus imaging, the dimensions (lengths of long and short axes) and the area of each thermal ablation zone obtained from an elastic modulus image were compared to the corresponding gross pathology photograph of the same ablation zone. Comparison of elastic modulus imaging measurements and gross pathology measurements showed high correlation with respect to the area of thermal ablation zones (Pearson coefficient = 0.950 and p < 0.0001). The radiological-pathological correlation was slightly lower (correlation = 0.853, p < 0.0001) for strain imaging among these 14 in vivo ablation zones. We also found that, on average, elastic modulus imaging can more accurately depict thermal ablation zones, when compared to strain imaging (14.7% versus 22.3% absolute percent error in area measurements, respectively). Furthermore, elastic modulus imaging also provides higher (more than a factor of 2) contrast-to-noise ratios for evaluating these thermal ablation zones than those on corresponding strain images, thereby reducing inter-observer variability. Our preliminary results suggest that elastic modulus imaging might potentially enhance the ability to visualize thermal ablation zones, thereby improving assessment of ablative therapies.


Subject(s)
Ablation Techniques , Elastic Modulus , Swine , Ultrasonics , Algorithms , Animals , Liver/cytology , Liver/diagnostic imaging , Liver/surgery , Models, Animal , Observer Variation , Ultrasonography
18.
Ultrason Imaging ; 32(4): 214-28, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21213567

ABSTRACT

We have characterized the viscoelastic properties of human cervical tissue through a range of precompressional loads and testing frequencies. Mechanical testing is necessary to develop robust elasticity-based techniques for the diagnosis of cervical abnormalities. The storage modulus (E') and material damping (tan 6) were measured in 13 patients, 40 to 76 years old. Our results showed that E' increased monotonically from approximately 4.7 to 6.3 kPa over the precompression range (1-6%) for a testing frequency of 1 Hz. Increases in precompressions of 4% or greater significantly increased E' obtained after dynamic compression testing when data were normalized to 1% precompression. Tan delta remained fairly constant (approximately 0.35) and was not significantly affected by changes in precompression. E' and tan delta increased significantly with frequency. E 'monotonically increased from 4.7 to 7.9 kPa for the 1-3% compression range (lowest precompression for 2% amplitude) and from 6.3 to 10.3 kPa for the 6-8% range (highest precompression for 2% amplitude) when increasing frequency from 1 to 30 Hz. Tan delta increased montonically from 0.35 to 0.45 for 2% amplitude compressions from 1 to 30 Hz regardless of initial precompression. Our results show that precompression and testing frequency must be taken into account in order to obtain consistent measurements in mechanical diagnostic tests developed for cervical abnormalities.


Subject(s)
Cervix Uteri , Elasticity , Stress, Mechanical , Adult , Aged , Analysis of Variance , Female , Humans , In Vitro Techniques , Middle Aged , Viscosity
SELECTION OF CITATIONS
SEARCH DETAIL
...