Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 56(22): 15460-15469, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36309910

ABSTRACT

Vast black carbon (BC) emissions from sub-Saharan Africa are perceived to warm the regional climate, impact rainfall patterns, and impair human respiratory health. However, the magnitudes of these perturbations are ill-constrained, largely due to limited ground-based observations and uncertainties in emissions from different sources. This paper reports multiyear concentrations of BC and other key PM2.5 aerosol constituents from the Rwanda Climate Observatory, serving as a regional receptor site. We find a strong seasonal cycle for all investigated chemical species, where the maxima coincide with large-scale upwind savanna fires. BC concentrations show notable interannual variability, with no clear long-term trend. The Δ14C and δ13C signatures of BC unambiguously show highly elevated biomass burning contributions, up to 93 ± 3%, with a clear and strong savanna burning imprint. We further observe a near-equal contribution from C3 and C4 plants, irrespective of air mass source region or season. In addition, the study provides improved relative emission factors of key aerosol components, organic carbon (OC), K+, and NO3-, in savanna-fires-influenced background atmosphere. Altogether, we report quantitative source constraints on Eastern Africa BC emissions, with implications for parameterization of satellite fire and bottom-up emission inventories as well as regional climate and chemical transport modeling.


Subject(s)
Air Pollutants , Fires , Humans , Air Pollutants/analysis , Grassland , Soot/analysis , Aerosols/analysis , Carbon/analysis , Biomass , Africa South of the Sahara , Environmental Monitoring
2.
J Air Waste Manag Assoc ; 70(3): 292-306, 2020 03.
Article in English | MEDLINE | ID: mdl-31961265

ABSTRACT

As public awareness and concern about air quality grows, companies and researchers have begun to develop small, low-cost sensors to measure local air quality. These sensors have been used in citizen science projects, in distributed networks within cities, and in combination with public health studies on asthma and other air-quality-associated diseases. However, sensor long-term performance under different environmental conditions and pollutant levels is not fully understood. In addition, further evaluation is needed for other long-term performance trends such as performance among sensors of the same model, comparison between sensors from different companies and comparison of sensor data to federal equivalence or reference method (FEM/FRM) measurements. A 10-month evaluation of two popular particulate matter (PM) sensors, Dylos DC1100 and AirBeam, and a popular ozone (O3) sensor, Aeroqual 500, was performed as part of this study. Data from these sensors were compared to each other and to FEM/FRM data and local meteorology. The study took place at the Houston Regional Monitoring (HRM) site 3, located between the Houston Ship Channel and Houston's urban center. PM sensor performance was found to vary in time, with multivariate analysis, binning of data by meteorological parameter, and machine learning techniques able to account for some but not all performance variations. PM type (i.e., size distribution, fiber-flake-spheroid shape and black-brown-white color) likely played a role in the changing sensor performance. Triplicate individual Aeroqual O3 sensors tracked reasonably well with the FEM data for most of the measurement period but had irregular periods of O3 measurement offset. While the FEM data indicated 4 days where ozone levels were above the NAAQS, the Aeroqual ozone sensors indicated a substantially higher number of days, ranging from 9 to 16 for the three sensors.Implications: This paper evaluated the long-term performance of several commercial low-cost sensors (PM2.5 and ozone) as compared to federal equivalence method (FEM) monitors under a range of meteorological and air quality conditions. PM2.5 sensors performed well on low humidity days with winds indicative of sea salt or dust PM sources but had poor correlation with FEM data under other conditions. Two types of PM sensors were studied (Dylos 1100 and AirBeam) and data only correlated well between sensors of the same type. Sensor networks with multiple PM sensor types would not be as useful for comparative purposes as sensor networks of the same type. Relative humidity corrections alone did not increase sensor agreement with FEM to acceptable levels, specific information about PM sources and sensor response in the area measured is needed. Low-cost ozone sensors tested (Aeroqual) performed well but were biased high and overestimated days above ozone NAAQS.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/instrumentation , Ozone/analysis , Particulate Matter/analysis , Air Pollution/analysis , Cities , Environmental Monitoring/methods , Humidity , Texas , Wind
3.
Astrobiology ; 10(8): 773-81, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21087157

ABSTRACT

The presence of sulfur mass-independent fractionation (S-MIF) in sediments more than 2.45 × 10(9) years old is thought to be evidence for an early anoxic atmosphere. Photolysis of sulfur dioxide (SO(2)) by UV light with λ < 220 nm has been shown in models and some initial laboratory studies to create a S-MIF; however, sulfur must leave the atmosphere in at least two chemically different forms to preserve any S-MIF signature. Two commonly cited examples of chemically different sulfur species that could have exited the atmosphere are elemental sulfur (S(8)) and sulfuric acid (H(2)SO(4)) aerosols. Here, we use real-time aerosol mass spectrometry to directly detect the sulfur-containing aerosols formed when SO(2) either photolyzes at wavelengths from 115 to 400 nm, to simulate the UV solar spectrum, or interacts with high-energy electrons, to simulate lightning. We found that sulfur-containing aerosols form under all laboratory conditions. Further, the addition of a reducing gas, in our experiments hydrogen (H(2)) or methane (CH(4)), increased the formation of S(8). With UV photolysis, formation of S(8) aerosols is highly dependent on the initial SO(2) pressure; and S(8) is only formed at a 2% SO(2) mixing ratio and greater in the absence of a reductant, and at a 0.2% SO(2) mixing ratio and greater in the presence of 1000 ppmv CH(4). We also found that organosulfur compounds are formed from the photolysis of CH(4) and moderate amounts of SO(2). The implications for sulfur aerosols on early Earth are discussed. Key Words: S-MIF-Archean atmosphere-Early Earth-Sulfur aerosols.


Subject(s)
Atmosphere/chemistry , Sulfur/chemistry , Aerosols , Earth, Planet , Gases/chemistry , Mass Spectrometry , Photolysis , Sulfates/chemistry , Sulfur Dioxide/chemistry
4.
Astrobiology ; 9(5): 447-53, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19566425

ABSTRACT

Recent attempts to resolve the faint young Sun paradox have focused on an early Earth atmosphere with elevated levels of the greenhouse gases methane (CH(4)) and carbon dioxide (CO(2)) that could have provided adequate warming to Earth's surface. On Titan, the photolysis of CH(4) has been shown to create a thick haze layer that cools its surface. Unlike Titan, however, early Earth's atmosphere likely contained high amounts of CO(2) and hydrogen (H(2)). In this work, we examine haze formation in an early Earth atmosphere composed of CO(2), H(2), N(2), and CH(4), with a CO(2)/CH(4) ratio of 10 and a H(2)/CO(2) ratio of up to 15. To initiate aerosol formation, a broad-spectrum ultraviolet (UV) energy source with emission at Lyman-alpha was used to simulate the solar spectrum. Aerosol composition and total aerosol mass produced as a function of reagent gas were measured with an aerosol mass spectrometer (AMS). Results show an order of magnitude decrease in haze production with the addition of H(2), with no significant change in the chemical composition of the haze. We calculate that the presence of H(2) on early Earth could thus have favored warmer surface temperatures and yet allowed photochemical haze formation to deliver complex organic species to early Earth's surface.


Subject(s)
Aerosols/chemistry , Earth, Planet , Hydrogen/chemistry , Computer Simulation , Mass Spectrometry , Molecular Weight , Particulate Matter , Photolysis , Surface Properties , Temperature
5.
Proc Natl Acad Sci U S A ; 103(48): 18035-42, 2006 Nov 28.
Article in English | MEDLINE | ID: mdl-17101962

ABSTRACT

Recent exploration by the Cassini/Huygens mission has stimulated a great deal of interest in Saturn's moon, Titan. One of Titan's most captivating features is the thick organic haze layer surrounding the moon, believed to be formed from photochemistry high in the CH(4)/N(2) atmosphere. It has been suggested that a similar haze layer may have formed on the early Earth. Here we report laboratory experiments that demonstrate the properties of haze likely to form through photochemistry on Titan and early Earth. We have used a deuterium lamp to initiate particle production in these simulated atmospheres from UV photolysis. Using a unique analysis technique, the aerosol mass spectrometer, we have studied the chemical composition, size, and shape of the particles produced as a function of initial trace gas composition. Our results show that the aerosols produced in the laboratory can serve as analogs for the observed haze in Titan's atmosphere. Experiments performed under possible conditions for early Earth suggest a significant optical depth of haze may have dominated the early Earth's atmosphere. Aerosol size measurements are presented, and implications for the haze layer properties are discussed. We estimate that aerosol production on the early Earth may have been on the order of 10(14) g.year(-1) and thus could have served as a primary source of organic material to the surface.

SELECTION OF CITATIONS
SEARCH DETAIL
...