Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Langmuir ; 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34339205

ABSTRACT

Protein S100A10 participates in different cellular mechanisms and has different functions, especially at the membrane. Among those, it forms a ternary complex with annexin A2 and the C-terminal of AHNAK and then joins the dysferlin membrane repair complex. Together, they act as a platform enabling membrane repair. Both AHNAK and annexin A2 have been shown to have membrane binding properties. However, the membrane binding abilities of S100A10 are not clear. In this paper, we aimed to study the membrane binding of S100A10 in order to better understand its role in the cell membrane repair process. S100A10 was overexpressed by E. coli and purified by affinity chromatography. Using a Langmuir monolayer as a model membrane, the binding parameters and ellipsometric angles of the purified S100A10 were measured using surface tensiometry and ellipsometry, respectively. Phosphorus-31 solid-state nuclear magnetic resonance spectroscopy was also used to study the interaction of S100A10 with lipid bilayers. In the presence of a lipid monolayer, S100A10 preferentially interacts with unsaturated phospholipids. In addition, its behavior in the presence of a bilayer model suggests that S100A10 interacts more with the negatively charged polar head groups than the zwitterionic ones. This work offers new insights on the binding of S100A10 to different phospholipids and advances our understanding of the parameters influencing its membrane behavior.

2.
Phys Chem Chem Phys ; 22(11): 6154-6166, 2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32124897

ABSTRACT

The antibacterial activity of a calixarene derivative, p-tert-butylcalix[6]arene (Calix6), was assessed and was shown not to inhibit the growth of E. coli, S. aureus and B. subtilis bacteria. With the aim of gaining more insights into the absence of antibacterial activity of Calix6, the interaction of this derivative with DPPG, a bacterial cell membrane lipid, was studied. Langmuir monolayers were used as the model membrane. Pure DPPG and pure Calix6 monolayers, as well as binary DPPG:Calix6 mixtures were studied using surface pressure measurements, compressional modulus, Brewster angle and fluorescence microscopies, ellipsometry, polarization-modulation infrared reflection absorption spectroscopy and molecular dynamics simulations. Thermodynamic properties of the mixed monolayers were additionally calculated using thermodynamic parameters. The analysis of isotherms showed that Calix6 significantly affects the DPPG monolayers, modifying the isotherm profile and increasing the molecular area, in agreement with the molecular dynamics simulations. The presence of Calix6 in the mixed monolayers decreased the interfacial elasticity, indicating that calixarene disrupts the strong intermolecular interactions of DPPG hindering its organization into a compact arrangement. At low molar ratios of Calix6, the DPPG:Calix6 interactions are preferentially attractive, due to the interactions between the hydrophobic tails of DPPG and the tert-butyl groups of Calix6. Increasing the proportion of calixarene generates repulsive interactions. Calix6 significantly affects the hydrophobic tail organization, which was confirmed by PM-IRRAS measurements. Calix6 appears to be expelled from the mixed films at a biologically relevant surface pressure, π = 30 mN m-1, indicating a low interaction with the cell membrane model related to the absence of antibacterial activity.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Calixarenes/chemistry , Calixarenes/pharmacology , Cell Membrane/drug effects , Membranes, Artificial , Molecular Dynamics Simulation , Thermodynamics
3.
Langmuir ; 36(2): 660-665, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31880463

ABSTRACT

The need for new and potent antibiotics in an era of increasing multidrug resistance in bacteria has driven the search for new antimicrobial agents, including the design of synthetic antimicrobial peptides (AMPs). While a number of ß-sheet forming AMPs have been proposed, their similarity to ß-amyloids raises a number of concerns associated with neurodegenerative states. GL13K is an effective, synthetic AMP that selectively folds into ß-sheets at anionic interfaces. Moreover, it is one of relatively few AMPs that preferentially fold into ß-sheets without bridging disulfides. The interfacial activity of GL13K and its propensity to form amyloid fibrils have not been investigated. Using structural studies at the air/water interface and in the absence of anionic lipids, we demonstrate that while GL13K does form crystalline ß-sheets, it does not self-assemble into fibrils. This work emphasizes the requirement for a single charged amino acid in the hydrophobic face to prevent fibril formation in synthetic peptides.

4.
Langmuir ; 36(1): 362-369, 2020 01 14.
Article in English | MEDLINE | ID: mdl-31825630

ABSTRACT

The dysferlin membrane repair complex contains a small complex, S100A10-annexin A2, which initiates membrane repair by recruiting the protein AHNAK to the membrane, where it interacts via binding sites in the C-terminal region. However, no molecular data are available for the membrane binding of the various proteins involved in this complex. Therefore, the present study investigated the membrane binding of AHNAK to elucidate its role in the cell membrane repair process. A chemically synthesized peptide (pAHNAK), comprising the 20 amino acids in the C-terminal domain of AHNAK, was applied to Langmuir monolayer models, and the binding parameters and insertion angles were measured with surface tensiometry and ellipsometry. The interaction of pAHNAK with lipid bilayers was studied using 31P solid-state nuclear magnetic resonance. pAHNAK preferentially and strongly interacted with phospholipids that comprised negatively charged polar head groups with unsaturated lipids. This finding provides a better understanding of AHNAK membrane behavior and the parameters that influence its function in membrane repair.


Subject(s)
Lipid Bilayers/chemistry , Membrane Proteins/chemistry , Neoplasm Proteins/chemistry , Phospholipids/chemistry , Humans , Protein Binding
5.
Langmuir ; 32(41): 10767-10775, 2016 Oct 18.
Article in English | MEDLINE | ID: mdl-27641759

ABSTRACT

Lung surfactant replacement therapies, Survanta and Infasurf, and two lipid-only systems both containing saturated and unsaturated phospholipids and one containing additional palmitic acid were used to study the impact of buffered saline on the surface activity, morphology, rheology, and structure of Langmuir monolayer model membranes. Isotherms and Brewster angle microscopy show that buffered saline subphases induce a film expansion, except when the cationic protein, SP-B, is present in sufficient quantities to already screen electrostatic repulsion, thus limiting the effect of changing pH and adding counterions. Grazing incidence X-ray diffraction results indicate an expansion not only of the liquid expanded phase but also an expansion of the lattice of the condensed phase. The film expansion corresponded in all cases with a significant reduction in the viscosity and elasticity of the films. The viscoelastic parameters are dominated by liquid expanded phase properties and do not appear to be dependent on the structure of the condensed phase domains in a phase separated film. The results highlight that the choice of subphase and film composition is important for meaningful interpretations of measurements using model systems.

6.
Langmuir ; 31(34): 9331-9, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26263385

ABSTRACT

Silicone polymers, with their high flexibility, lie in a monolayer at the air-water interface as they are compressed until a critical pressure is reached, at which point multilayers are formed. Surface pressure measurements demonstrate that, in contrast, silicones that are end-modified with polar groups take up lower surface areas under compression because the polar groups submerge into the water phase. Boronic acids have the ability to undergo coordination with Lewis bases. As part of a program to examine the surface properties of boronic acids, we have prepared boronic acid-modified silicones (SiBAs) and examined them at the air-water interface to better understand if they behave like other end-functional silicones. Monolayers of silicones, aminopropylsilicones, and SiBAs were characterized at the air-water interface as a function of end functionalization and silicone chain length. Brewster angle and atomic force microscopies confirm domain formation and similar film morphologies for both functionalized and non-functionalized silicone chains. There is a critical surface pressure (10 mN m(-1)) independent of chain length that corresponds to a first-order phase transition. Below this transition, the film appears to be a homogeneous monolayer, whose thickness is independent of the chain length. Ellipsometry at the air-water interface indicates that the boronic acid functionality leads to a significant increase of film thickness at low molecular areas that is not seen for non-functionalized silicone chains. What differentiates the boronic acids from simple silicones or other end-functionalized silicones, in particular, is the larger area occupied by the headgroup when under compression compared to other or non-end-functionalized silicones, which suggests an in-plane rather than submerged orientation that may be driven by boronic acid self-complexation.

7.
Langmuir ; 26(24): 18628-30, 2010 Dec 21.
Article in English | MEDLINE | ID: mdl-21090761

ABSTRACT

A novel space-filling trialkoxysilane derivative was synthesized using a two-step strategy from commercially available starting materials to produce the precursor for the formation of low-density self-assembled monolayers. Self-assembled monolayers of the synthesized compound were prepared on three different substrates (Si/SiO(2), glass and ITO) and were characterized using contact angle, ellipsometry and sum-frequency generation spectroscopy. Removal of the space-filling protecting group, (2-chlorophenyl)diphenyl methanol, yields a carboxy-terminated surface. Correspondingly, the contact angle and film thickness decrease and the SFG spectra clearly indicate an increase in gauche defect concentration characteristic of a low-density disordered monolayer.

8.
Phys Chem Chem Phys ; 9(43): 5814-21, 2007 Nov 21.
Article in English | MEDLINE | ID: mdl-19462577

ABSTRACT

It has been suggested that an organic aerosol containing unsaturated organic compounds at the surface would likely be processed by atmospheric ozone. The ozonolysis of oleic acid gives rise to the formation of products having shorter chain lengths than the starting molecule, and are consequently more water soluble than oleic acid. Hence, the exposure of a monolayer of oleic acid to ozone should lead to a decrease in surface activity at the air-water interface. A model system is used for real-time measurements of surface tension changes due to ozone exposure of a pendant drop that is coated by a fatty acid monolayer. The surface tension is measured based on an analysis of the shape profile of acquired images of the drop. A study of the kinetics of the gas-surface reaction is presented. Assuming that the uptake of ozone is dominated by the reaction at the surface, the measured reactive uptake coefficient of ozone gamma(meas) is estimated to be (2.6 +/- 0.1) x 10(-6).

9.
Chem Commun (Camb) ; (23): 2471-3, 2006 Jun 21.
Article in English | MEDLINE | ID: mdl-16758019

ABSTRACT

The reaction of ozone with unsaturated organic molecules at the air-water interface of a pendant drop was followed by axisymmetric drop shape analysis (ADSA).

10.
Langmuir ; 20(8): 3284-8, 2004 Apr 13.
Article in English | MEDLINE | ID: mdl-15875859

ABSTRACT

Monolayers of 1,2-dipalmitoylgalloylglycerol (DPGG) were investigated at the air-water interface. The monolayers exhibit high rigidity which leads to the formation of surface tension gradients in the film. Transfer to solid substrate yields homogeneous Langmuir-Blodgett films with low surface roughness. Large numbers of aggregates were observed by Brewster angle microscopy and imaging ellipsometry at relatively high molecular areas. At all pressures, the DPGG molecules adopt conformations corresponding to low tilt angles. Constant area measurements result in a pressure increase as the film rearranges to maximize the intermolecular interactions. An optimal intermolecular distance required for the formation of a hydrogen-bond network between headgroups is proposed to explain the observed, highly cohesive monolayer behavior.


Subject(s)
Diglycerides/chemistry , Hydrogen Bonding , Molecular Structure , Spectrum Analysis
11.
Chem Commun (Camb) ; (10): 1072-3, 2002 May 21.
Article in English | MEDLINE | ID: mdl-12122670

ABSTRACT

We report the development of a novel technique for the encapsulation of molecular and condensed organic and inorganic substrates within hollow calcium carbonate microspheres; the process utilises precipitation at the oil-water interface of a pseudovesicular water-in-oil-in-water emulsion liquid membrane (ELM) system in order to create an inorganic shell around the pre-dispersed media.

SELECTION OF CITATIONS
SEARCH DETAIL
...