Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Bioorg Med Chem ; 28(1): 115232, 2020 01 01.
Article in English | MEDLINE | ID: mdl-31818630

ABSTRACT

Glucose flux through glucokinase (GK) controls insulin release from the pancreas in response to high levels of glucose. Flux through GK is also responsible for reducing hepatic glucose output. Since many individuals with type 2 diabetes appear to have an inadequacy or defect in one or both of these processes, identifying compounds that can activate GK could provide a therapeutic benefit. Herein we report the further structure activity studies of a novel series of glucokinase activators (GKA). These studies led to the identification of pyridine 72 as a potent GKA that lowered post-prandial glucose in normal C57BL/6J mice, and after 14d dosing in ob/ob mice.


Subject(s)
Enzyme Activators/chemistry , Glucokinase/chemistry , Hypoglycemic Agents/chemistry , Animals , Binding Sites , Blood Glucose/analysis , Crystallography, X-Ray , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Drug Design , Drug Evaluation, Preclinical , Enzyme Activators/metabolism , Enzyme Activators/therapeutic use , Glucokinase/metabolism , Glucose Tolerance Test , Hypoglycemic Agents/metabolism , Hypoglycemic Agents/therapeutic use , Kinetics , Mice , Mice, Inbred C57BL , Molecular Dynamics Simulation , Structure-Activity Relationship , Thiadiazoles/chemistry , Thiadiazoles/metabolism
2.
Cancer Discov ; 7(9): 963-972, 2017 09.
Article in English | MEDLINE | ID: mdl-28578312

ABSTRACT

Larotrectinib, a selective TRK tyrosine kinase inhibitor (TKI), has demonstrated histology-agnostic efficacy in patients with TRK fusion-positive cancers. Although responses to TRK inhibition can be dramatic and durable, duration of response may eventually be limited by acquired resistance. LOXO-195 is a selective TRK TKI designed to overcome acquired resistance mediated by recurrent kinase domain (solvent front and xDFG) mutations identified in multiple patients who have developed resistance to TRK TKIs. Activity against these acquired mutations was confirmed in enzyme and cell-based assays and in vivo tumor models. As clinical proof of concept, the first 2 patients with TRK fusion-positive cancers who developed acquired resistance mutations on larotrectinib were treated with LOXO-195 on a first-in-human basis, utilizing rapid dose titration guided by pharmacokinetic assessments. This approach led to rapid tumor responses and extended the overall duration of disease control achieved with TRK inhibition in both patients.Significance: LOXO-195 abrogated resistance in TRK fusion-positive cancers that acquired kinase domain mutations, a shared liability with all existing TRK TKIs. This establishes a role for sequential treatment by demonstrating continued TRK dependence and validates a paradigm for the accelerated development of next-generation inhibitors against validated oncogenic targets. Cancer Discov; 7(9); 963-72. ©2017 AACR.See related commentary by Parikh and Corcoran, p. 934This article is highlighted in the In This Issue feature, p. 920.


Subject(s)
Antineoplastic Agents/therapeutic use , Drug Resistance, Neoplasm/drug effects , Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Receptor, trkA/antagonists & inhibitors , Animals , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Female , Humans , Mice , Mice, Nude , NIH 3T3 Cells , Neoplasms/genetics , Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Receptor, trkA/genetics , Receptor, trkA/metabolism
3.
ACS Med Chem Lett ; 7(7): 666-70, 2016 Jul 14.
Article in English | MEDLINE | ID: mdl-27437074

ABSTRACT

Two 1-(4-aryl-5-alkyl-pyridin-2-yl)-3-methylurea glucokinase activators were identified with robust in vivo efficacy. These two compounds possessed higher solubilities than the previously identified triaryl compounds (i.e., AM-2394). Structure-activity relationship studies are presented along with relevant pharmacokinetic and in vivo data.

4.
ACS Med Chem Lett ; 7(7): 714-8, 2016 Jul 14.
Article in English | MEDLINE | ID: mdl-27437083

ABSTRACT

Glucokinase (GK) catalyzes the phosphorylation of glucose to glucose-6-phosphate. We present the structure-activity relationships leading to the discovery of AM-2394, a structurally distinct GKA. AM-2394 activates GK with an EC50 of 60 nM, increases the affinity of GK for glucose by approximately 10-fold, exhibits moderate clearance and good oral bioavailability in multiple animal models, and lowers glucose excursion following an oral glucose tolerance test in an ob/ob mouse model of diabetes.

5.
ACS Med Chem Lett ; 5(12): 1284-9, 2014 Dec 11.
Article in English | MEDLINE | ID: mdl-25516785

ABSTRACT

Glucokinase (GK) activators represent a class of type 2 diabetes therapeutics actively pursued due to the central role that GK plays in regulating glucose homeostasis. Herein we report a novel C5-alkyl-2-methylurea-substituted pyridine series of GK activators derived from our previously reported thiazolylamino pyridine series. Our efforts in optimizing potency, enzyme kinetic properties, and metabolic stability led to the identification of compound 26 (AM-9514). This analogue showed a favorable combination of in vitro potency, enzyme kinetic properties, acceptable pharmacokinetic profiles in preclinical species, and robust efficacy in a rodent PD model.

6.
J Med Chem ; 57(19): 8180-6, 2014 Oct 09.
Article in English | MEDLINE | ID: mdl-25203462

ABSTRACT

Glucokinase (GK) is the rate-limiting step for insulin release from the pancreas in response to high levels of glucose. Flux through GK also contributes to reducing hepatic glucose output. Since many individuals with type 2 diabetes appear to have an inadequacy or defect in one or both of these processes, identifying compounds that can allosterically activate GK may address this issue. Herein we report the identification and initial optimization of a novel series of glucokinase activators (GKAs). Optimization led to the identification of 33 as a compound that displayed activity in an oral glucose tolerance test (OGTT) in normal and diabetic mice.


Subject(s)
Enzyme Activators/chemical synthesis , Glucokinase/metabolism , Pyridines/chemical synthesis , Urea/analogs & derivatives , Animals , Drug Discovery , Enzyme Activators/pharmacology , Glucose Tolerance Test , Mice, Inbred C57BL , Pyridines/pharmacology
7.
PLoS One ; 9(2): e88431, 2014.
Article in English | MEDLINE | ID: mdl-24533087

ABSTRACT

Glucokinase (GK) is a hexokinase isozyme that catalyzes the phosphorylation of glucose to glucose-6-phosphate. Glucokinase activators are being investigated as potential diabetes therapies because of their effects on hepatic glucose output and/or insulin secretion. Here, we have examined the efficacy and mechanisms of action of a novel glucokinase activator, GKA23. In vitro, GKA23 increased the affinity of rat and mouse glucokinase for glucose, and increased glucose uptake in primary rat hepatocytes. In vivo, GKA23 treatment improved glucose homeostasis in rats by enhancing beta cell insulin secretion and suppressing hepatic glucose production. Sub-chronic GKA23 treatment of mice fed a high-fat diet resulted in improved glucose homeostasis and lipid profile.


Subject(s)
Aminopyridines/chemistry , Enzyme Activators/chemistry , Glucokinase/metabolism , Thiadiazoles/chemistry , Animals , Area Under Curve , Blood Glucose/metabolism , Catalysis , Diabetes Mellitus, Experimental/drug therapy , Glucose/metabolism , Glucose Tolerance Test , Hepatocytes/metabolism , Homeostasis , Insulin/metabolism , Insulin Secretion , Insulin-Secreting Cells/cytology , Kinetics , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Obesity/drug therapy , Phosphorylation , Rats , Rats, Sprague-Dawley
8.
J Med Chem ; 56(19): 7669-78, 2013 Oct 10.
Article in English | MEDLINE | ID: mdl-24015910

ABSTRACT

Glucose flux through glucokinase (GK) controls insulin release from the pancreas in response to high glucose concentrations. Glucose flux through GK also contributes to reducing hepatic glucose output. Because many individuals with type 2 diabetes appear to have an inadequacy or defect in one or both of these processes, compounds that can activate GK may serve as effective treatments for type 2 diabetes. Herein we report the identification and initial optimization of a novel series of allosteric glucokinase activators (GKAs). We discovered an initial thiazolylamino pyridine-based hit that was optimized using a structure-based design strategy and identified 26 as an early lead. Compound 26 demonstrated a good balance of in vitro potency and enzyme kinetic parameters and demonstrated blood glucose reductions in oral glucose tolerance tests in both C57BL/6J mice and high-fat fed Zucker diabetic fatty rats.


Subject(s)
Aminopyridines/chemical synthesis , Enzyme Activators/chemical synthesis , Glucokinase/metabolism , Hypoglycemic Agents/chemical synthesis , Thiazoles/chemical synthesis , Allosteric Regulation , Aminopyridines/chemistry , Aminopyridines/pharmacology , Animals , Diabetes Mellitus, Type 2/drug therapy , Enzyme Activators/chemistry , Enzyme Activators/pharmacology , Glucose Tolerance Test , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Mice , Mice, Inbred C57BL , Rats , Rats, Zucker , Structure-Activity Relationship , Thiazoles/chemistry , Thiazoles/pharmacology , Young Adult
9.
Biotechnol Bioeng ; 95(4): 560-73, 2006 Nov 05.
Article in English | MEDLINE | ID: mdl-16921527

ABSTRACT

Four-enzyme section of the shikimate pathway (Aro B, D, E, and K) of Streptococcus pneumoniae has been studied. Kinetic properties of the individual enzymes and three- and four-enzyme linked reactions have been characterized in vitro. On the basis of the data measured in spectrophotometric and LC-MS experiments, kinetic mechanisms of the enzymes have been suggested and all kinetic parameters have been identified. Kinetic models for these three- and four-enzyme sections of the shikimate pathway have been constructed and validated. The model of the four-enzyme section of shikimate pathway has been employed to design an inhibition-sensitive reconstituted pathway for a high-throughput screening effort on the shikimate pathway. It was demonstrated that using the model it was possible to optimize this reconstituted pathway in such a way to provide equal sensitivity of the enzymes to inhibition.


Subject(s)
Alcohol Oxidoreductases/metabolism , Hydro-Lyases/metabolism , Molecular Biology/methods , Phosphorus-Oxygen Lyases/metabolism , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Streptococcus pneumoniae/enzymology , Alcohol Oxidoreductases/genetics , Biosynthetic Pathways , Gene Expression Regulation, Bacterial , Hydro-Lyases/genetics , Kinetics , Models, Biological , Oligonucleotide Array Sequence Analysis , Phosphorus-Oxygen Lyases/genetics , Phosphotransferases (Alcohol Group Acceptor)/genetics
10.
J Med Chem ; 46(9): 1627-35, 2003 Apr 24.
Article in English | MEDLINE | ID: mdl-12699381

ABSTRACT

Bacterial enoyl-ACP reductase (FabI) is responsible for catalyzing the final step of bacterial fatty acid biosynthesis and is an attractive target for the development of novel antibacterial agents. Previously we reported the development of FabI inhibitor 4 with narrow spectrum antimicrobial activity and in vivo efficacy against Staphylococcus aureus via intraperitoneal (ip) administration. Through iterative medicinal chemistry aided by X-ray crystal structure analysis, a new series of inhibitors has been developed with greatly increased potency against FabI-containing organisms. Several of these new inhibitors have potent antibacterial activity against multidrug resistant strains of S. aureus, and compound 30 demonstrates exceptional oral (po) in vivo efficacy in a S. aureus infection model in rats. While optimizing FabI inhibitory activity, compounds 29 and 30 were identified as having low micromolar FabK inhibitory activity, thereby increasing the antimicrobial spectrum of these compounds to include the FabK-containing pathogens Streptococcus pneumoniae and Enterococcus faecalis. The results described herein support the hypothesis that bacterial enoyl-ACP reductases are valid targets for antibacterial agents.


Subject(s)
Acrylamides/chemical synthesis , Anti-Bacterial Agents/chemical synthesis , Enzyme Inhibitors/chemical synthesis , Fatty Acid Synthases/antagonists & inhibitors , Indoles/chemical synthesis , Naphthyridines/chemical synthesis , Oxidoreductases/antagonists & inhibitors , Abscess/drug therapy , Acrylamides/chemistry , Acrylamides/pharmacology , Administration, Oral , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Crystallography, X-Ray , Drug Resistance, Bacterial , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) , Enterococcus faecalis/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Haemophilus influenzae/drug effects , Indoles/chemistry , Indoles/pharmacology , Microbial Sensitivity Tests , Models, Molecular , Naphthyridines/chemistry , Naphthyridines/pharmacology , Rats , Staphylococcus aureus/drug effects , Stereoisomerism , Structure-Activity Relationship , Triclosan/pharmacology
11.
Biochem J ; 370(Pt 3): 1055-62, 2003 Mar 15.
Article in English | MEDLINE | ID: mdl-12487627

ABSTRACT

The enoyl-(acyl-carrier protein) (ACP) reductase catalyses the last step in each cycle of fatty acid elongation in the type II fatty acid synthase systems. An extensively characterized NADH-dependent reductase, FabI, is widely distributed in bacteria and plants, whereas the enoyl-ACP reductase, FabK, is a distinctly different member of this enzyme group discovered in Streptococcus pneumoniae. We were unable to delete the fabK gene from Strep. pneumoniae, suggesting that this is the only enoyl-ACP reductase in this organism. The FabK enzyme was purified and the biochemical properties of the reductase were examined. The visible absorption spectrum of the purified protein indicated the presence of a flavin cofactor that was identified as FMN by MS, and was present in a 1:1 molar ratio with protein. FabK specifically required NADH and the protein activity was stimulated by ammonium ions. FabK also exhibited NADH oxidase activity in the absence of substrate. Strep. pneumoniae belongs to the Bacillus / Lactobacillus / Streptococcus group that includes Staphylococcus aureus and Bacillus subtilis. These two organisms also contain FabK-related genes, suggesting that they may also express a FabK-like enoyl-ACP reductase. However, the genes did not complement a fabI (Ts) mutant and the purified flavoproteins were unable to reduce enoyl-ACP in vitro and did not exhibit NAD(P)H oxidase activity, indicating they were not enoyl-ACP reductases. The restricted occurrence of the FabK enoyl-ACP reductase may be related to the role of substrate-independent NADH oxidation in oxygen-dependent anaerobic energy metabolism.


Subject(s)
Oxidoreductases/metabolism , Streptococcus pneumoniae/enzymology , Amino Acid Sequence , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) , Genes, Bacterial , Molecular Sequence Data , Multienzyme Complexes/metabolism , NAD/metabolism , NADH, NADPH Oxidoreductases/metabolism , Oxidoreductases/chemistry , Oxidoreductases/genetics , Sequence Alignment , Streptococcus pneumoniae/genetics
12.
Antimicrob Agents Chemother ; 46(11): 3343-7, 2002 Nov.
Article in English | MEDLINE | ID: mdl-12384334

ABSTRACT

The MICs of triclosan for 31 clinical isolates of Staphylococcus aureus were 0.016 micro g/ml (24 strains), 1 to 2 micro g/ml (6 strains), and 0.25 micro g/ml (1 strain). All the strains for which triclosan MICs were elevated (>0.016 micro g/ml) showed three- to fivefold increases in their levels of enoyl-acyl carrier protein (ACP) reductase (FabI) production. Furthermore, strains for which triclosan MICs were 1 to 2 micro g/ml overexpressed FabI with an F204C alteration. Binding studies with radiolabeled NAD(+) demonstrated that this change prevents the formation of the stable triclosan-NAD(+)-FabI complex, and both this alteration and its overexpression contributed to achieving MICs of 1 to 2 micro g/ml for these strains. Three novel, potent inhibitors of FabI (50% inhibitory concentrations, < or =64 nM) demonstrated up to 1,000-fold better activity than triclosan against the strains for which triclosan MICs were elevated. None of the compounds tested from this series formed a stable complex with NAD(+)-FabI. Consequently, although the overexpression of wild-type FabI gave rise to an increase in the MICs, as expected, overexpression of FabI with an F204C alteration did not cause an additional increase in resistance. Therefore, this work identifies the mechanisms of triclosan resistance in S. aureus, and we present three compounds from a novel chemical series of FabI inhibitors which have excellent activities against both triclosan-resistant and -sensitive clinical isolates of S. aureus.


Subject(s)
Anti-Infective Agents, Local/pharmacology , Staphylococcal Infections/microbiology , Staphylococcus aureus/drug effects , Triclosan/pharmacology , Anti-Infective Agents, Local/metabolism , Blotting, Western , Crystallography, X-Ray , Drug Resistance, Bacterial , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) , Humans , Kinetics , Microbial Sensitivity Tests , Models, Molecular , Molecular Conformation , Oxidoreductases/antagonists & inhibitors , Oxidoreductases/biosynthesis , Oxidoreductases/isolation & purification , Protein Binding , Staphylococcus aureus/enzymology , Triclosan/metabolism
13.
Antimicrob Agents Chemother ; 46(10): 3118-24, 2002 10.
Article in English | MEDLINE | ID: mdl-12234833

ABSTRACT

Bacterial enoyl-acyl carrier protein (ACP) reductase (FabI) catalyzes the final step in each elongation cycle of bacterial fatty acid biosynthesis and is an attractive target for the development of new antibacterial agents. High-throughput screening of the Staphylococcus aureus FabI enzyme identified a novel, weak inhibitor with no detectable antibacterial activity against S. aureus. Iterative medicinal chemistry and X-ray crystal structure-based design led to the identification of compound 4 [(E)-N-methyl-N-(2-methyl-1H-indol-3-ylmethyl)-3-(7-oxo-5,6,7,8-tetrahydro-1,8-naphthyridin-3-yl)acrylamide], which is 350-fold more potent than the original lead compound obtained by high-throughput screening in the FabI inhibition assay. Compound 4 has exquisite antistaphylococci activity, achieving MICs at which 90% of isolates are inhibited more than 500 times lower than those of nine currently available antibiotics against a panel of multidrug-resistant strains of S. aureus and Staphylococcus epidermidis. Furthermore, compound 4 exhibits excellent in vivo efficacy in an S. aureus infection model in rats. Biochemical and genetic approaches have confirmed that the mode of antibacterial action of compound 4 and related compounds is via inhibition of FabI. Compound 4 also exhibits weak FabK inhibitory activity, which may explain its antibacterial activity against Streptococcus pneumoniae and Enterococcus faecalis, which depend on FabK and both FabK and FabI, respectively, for their enoyl-ACP reductase function. These results show that compound 4 is representative of a new, totally synthetic series of antibacterial agents that has the potential to provide novel alternatives for the treatment of S. aureus infections that are resistant to our present armory of antibiotics.


Subject(s)
Anti-Bacterial Agents , Enzyme Inhibitors , Oxidoreductases/antagonists & inhibitors , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Multiple, Bacterial , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacokinetics , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use , Gram-Negative Bacteria/drug effects , Gram-Negative Bacteria/enzymology , Humans , Male , Microbial Sensitivity Tests , Rats , Rats, Sprague-Dawley , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects , Staphylococcus aureus/enzymology , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/enzymology , Structure-Activity Relationship
14.
J Med Chem ; 45(15): 3246-56, 2002 Jul 18.
Article in English | MEDLINE | ID: mdl-12109908

ABSTRACT

Bacterial enoyl-ACP reductase (FabI) catalyzes the final step in each cycle of bacterial fatty acid biosynthesis and is an attractive target for the development of new antibacterial agents. Our efforts to identify potent, selective FabI inhibitors began with screening of the GlaxoSmithKline proprietary compound collection, which identified several small-molecule inhibitors of Staphylococcus aureus FabI. Through a combination of iterative medicinal chemistry and X-ray crystal structure based design, one of these leads was developed into the novel aminopyridine derivative 9, a low micromolar inhibitor of FabI from S. aureus (IC(50) = 2.4 microM) and Haemophilus influenzae (IC(50) = 4.2 microM). Compound 9 has good in vitro antibacterial activity against several organisms, including S. aureus (MIC = 0.5 microg/mL), and is effective in vivo in a S. aureus groin abscess infection model in rats. Through FabI overexpressor and macromolecular synthesis studies, the mode of action of 9 has been confirmed to be inhibition of fatty acid biosynthesis via inhibition of FabI. Taken together, these results support FabI as a valid antibacterial target and demonstrate the potential of small-molecule FabI inhibitors for the treatment of bacterial infections.


Subject(s)
Acrylamides/chemical synthesis , Aminopyridines/chemical synthesis , Anti-Bacterial Agents/chemical synthesis , Enzyme Inhibitors/chemical synthesis , Fatty Acid Synthases/antagonists & inhibitors , Oxidoreductases/antagonists & inhibitors , Acrylamides/chemistry , Acrylamides/pharmacology , Aminopyridines/chemistry , Aminopyridines/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Crystallography, X-Ray , Databases, Factual , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH) , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Fatty Acid Synthases/chemistry , Haemophilus influenzae/drug effects , Inhibitory Concentration 50 , Microbial Sensitivity Tests , Models, Molecular , Oxidoreductases/chemistry , Rats , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...