Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Environ Sci Technol ; 50(14): 7732-42, 2016 07 19.
Article in English | MEDLINE | ID: mdl-27172125

ABSTRACT

The United States Environmental Protection Agency (EPA) identified 1173 chemicals associated with hydraulic fracturing fluids, flowback, or produced water, of which 1026 (87%) lack chronic oral toxicity values for human health assessments. To facilitate the ranking and prioritization of chemicals that lack toxicity values, it may be useful to employ toxicity estimates from quantitative structure-activity relationship (QSAR) models. Here we describe an approach for applying the results of a QSAR model from the TOPKAT program suite, which provides estimates of the rat chronic oral lowest-observed-adverse-effect level (LOAEL). Of the 1173 chemicals, TOPKAT was able to generate LOAEL estimates for 515 (44%). To address the uncertainty associated with these estimates, we assigned qualitative confidence scores (high, medium, or low) to each TOPKAT LOAEL estimate, and found 481 to be high-confidence. For 48 chemicals that had both a high-confidence TOPKAT LOAEL estimate and a chronic oral reference dose from EPA's Integrated Risk Information System (IRIS) database, Spearman rank correlation identified 68% agreement between the two values (permutation p-value =1 × 10(-11)). These results provide support for the use of TOPKAT LOAEL estimates in identifying and prioritizing potentially hazardous chemicals. High-confidence TOPKAT LOAEL estimates were available for 389 of 1026 hydraulic fracturing-related chemicals that lack chronic oral RfVs and OSFs from EPA-identified sources, including a subset of chemicals that are frequently used in hydraulic fracturing fluids.


Subject(s)
Hydraulic Fracking , Quantitative Structure-Activity Relationship , Animals , Hazardous Substances/toxicity , Models, Theoretical , Rats , Risk Assessment , United States , United States Environmental Protection Agency
2.
Environ Sci Technol ; 50(9): 4788-97, 2016 05 03.
Article in English | MEDLINE | ID: mdl-27050380

ABSTRACT

Concerns have been raised about potential public health effects that may arise if hydraulic fracturing-related chemicals were to impact drinking water resources. This study presents an overview of the chronic oral toxicity values-specifically, chronic oral reference values (RfVs) for noncancer effects, and oral slope factors (OSFs) for cancer-that are available for a list of 1173 chemicals that the United States (U.S.) Environmental Protection Agency (EPA) identified as being associated with hydraulic fracturing, including 1076 chemicals used in hydraulic fracturing fluids and 134 chemicals detected in flowback or produced waters from hydraulically fractured wells. The EPA compiled RfVs and OSFs using six governmental and intergovernmental data sources. Ninety (8%) of the 1076 chemicals reported in hydraulic fracturing fluids and 83 (62%) of the 134 chemicals reported in flowback/produced water had a chronic oral RfV or OSF available from one or more of the six sources. Furthermore, of the 36 chemicals reported in hydraulic fracturing fluids in at least 10% of wells nationwide (identified from EPA's analysis of the FracFocus Chemical Disclosure Registry 1.0), 8 chemicals (22%) had an available chronic oral RfV. The lack of chronic oral RfVs and OSFs for the majority of these chemicals highlights the significant knowledge gap that exists to assess the potential human health hazards associated with hydraulic fracturing.


Subject(s)
Hydraulic Fracking , Water , Humans , Risk , United States , Wastewater , Water Resources , Water Wells
3.
Environ Health Perspect ; 124(11): 1671-1682, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27091369

ABSTRACT

BACKGROUND: The Next Generation (NexGen) of Risk Assessment effort is a multi-year collaboration among several organizations evaluating new, potentially more efficient molecular, computational, and systems biology approaches to risk assessment. This article summarizes our findings, suggests applications to risk assessment, and identifies strategic research directions. OBJECTIVE: Our specific objectives were to test whether advanced biological data and methods could better inform our understanding of public health risks posed by environmental exposures. METHODS: New data and methods were applied and evaluated for use in hazard identification and dose-response assessment. Biomarkers of exposure and effect, and risk characterization were also examined. Consideration was given to various decision contexts with increasing regulatory and public health impacts. Data types included transcriptomics, genomics, and proteomics. Methods included molecular epidemiology and clinical studies, bioinformatic knowledge mining, pathway and network analyses, short-duration in vivo and in vitro bioassays, and quantitative structure activity relationship modeling. DISCUSSION: NexGen has advanced our ability to apply new science by more rapidly identifying chemicals and exposures of potential concern, helping characterize mechanisms of action that influence conclusions about causality, exposure-response relationships, susceptibility and cumulative risk, and by elucidating new biomarkers of exposure and effects. Additionally, NexGen has fostered extensive discussion among risk scientists and managers and improved confidence in interpreting and applying new data streams. CONCLUSIONS: While considerable uncertainties remain, thoughtful application of new knowledge to risk assessment appears reasonable for augmenting major scope assessments, forming the basis for or augmenting limited scope assessments, and for prioritization and screening of very data limited chemicals. Citation: Cote I, Andersen ME, Ankley GT, Barone S, Birnbaum LS, Boekelheide K, Bois FY, Burgoon LD, Chiu WA, Crawford-Brown D, Crofton KM, DeVito M, Devlin RB, Edwards SW, Guyton KZ, Hattis D, Judson RS, Knight D, Krewski D, Lambert J, Maull EA, Mendrick D, Paoli GM, Patel CJ, Perkins EJ, Poje G, Portier CJ, Rusyn I, Schulte PA, Simeonov A, Smith MT, Thayer KA, Thomas RS, Thomas R, Tice RR, Vandenberg JJ, Villeneuve DL, Wesselkamper S, Whelan M, Whittaker C, White R, Xia M, Yauk C, Zeise L, Zhao J, DeWoskin RS. 2016. The Next Generation of Risk Assessment multiyear study-highlights of findings, applications to risk assessment, and future directions. Environ Health Perspect 124:1671-1682; http://dx.doi.org/10.1289/EHP233.


Subject(s)
Environmental Monitoring/methods , Risk Assessment/methods , Environmental Pollutants/toxicity , Public Health/methods , Public Health/trends , Risk Assessment/trends
4.
Environ Health Perspect ; 123(10): 919-27, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25859901

ABSTRACT

BACKGROUND: Each year, the U.S. NHANES measures hundreds of chemical biomarkers in samples from thousands of study participants. These biomarker measurements are used to establish population reference ranges, track exposure trends, identify population subsets with elevated exposures, and prioritize research needs. There is now interest in further utilizing the NHANES data to inform chemical risk assessments. OBJECTIVES: This article highlights a) the extent to which U.S. NHANES chemical biomarker data have been evaluated, b) groups of chemicals that have been studied, c) data analysis approaches and challenges, and d) opportunities for using these data to inform risk assessments. METHODS: A literature search (1999-2013) was performed to identify publications in which U.S. NHANES data were reported. Manual curation identified only the subset of publications that clearly utilized chemical biomarker data. This subset was evaluated for chemical groupings, data analysis approaches, and overall trends. RESULTS: A small percentage of the sampled NHANES-related publications reported on chemical biomarkers (8% yearly average). Of 11 chemical groups, metals/metalloids were most frequently evaluated (49%), followed by pesticides (9%) and environmental phenols (7%). Studies of multiple chemical groups were also common (8%). Publications linking chemical biomarkers to health metrics have increased dramatically in recent years. New studies are addressing challenges related to NHANES data interpretation in health risk contexts. CONCLUSIONS: This article demonstrates growing use of NHANES chemical biomarker data in studies that can impact risk assessments. Best practices for analysis and interpretation must be defined and adopted to allow the full potential of NHANES to be realized.


Subject(s)
Environmental Exposure , Environmental Monitoring/methods , Environmental Pollutants/toxicity , Nutrition Surveys , Biomarkers/analysis , Humans , Risk Assessment , United States
5.
J Toxicol Environ Health B Crit Rev ; 11(7): 519-47, 2008 Aug.
Article in English | MEDLINE | ID: mdl-18584453

ABSTRACT

Physiologically based pharmacokinetic (PBPK) models are particularly useful for simulating exposures to environmental toxicants for which, unlike pharmaceuticals, there is often little or no human data available to estimate the internal dose of a putative toxic moiety in a target tissue or an appropriate surrogate. This article reviews the current state of knowledge and approaches for application of PBPK models in the process of deriving reference dose, reference concentration, and cancer risk estimates. Examples drawn from previous U.S. Environmental Protection Agency (EPA) risk assessments and human health risk assessments in peer-reviewed literature illustrate the ways and means of using PBPK models to quantify the pharmacokinetic component of the interspecies and intraspecies uncertainty factors as well as to conduct route to route, high dose to low dose and duration extrapolations. The choice of the appropriate dose metric is key to the use of the PBPK models for the various applications in risk assessment. Issues related to whether uncertainty factors are most appropriately applied before or after derivation of human equivalent dose (or concentration) continue to be explored. Scientific progress in the understanding of life stage and genetic differences in dosimetry and their impacts on variability in susceptibility, as well as ongoing development of analytical methods to characterize uncertainty in PBPK models, will make their use in risk assessment increasingly likely. As such, it is anticipated that when PBPK models are used to express adverse tissue responses in terms of the internal target tissue dose of the toxic moiety rather than the external concentration, the scientific basis of, and confidence in, risk assessments will be enhanced.


Subject(s)
Environmental Exposure , Environmental Pollutants/pharmacokinetics , Models, Biological , Animals , Dose-Response Relationship, Drug , Environmental Pollutants/administration & dosage , Humans , Risk Assessment , Species Specificity , Tissue Distribution , United States , United States Environmental Protection Agency
6.
Regul Toxicol Pharmacol ; 51(1): 66-86, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18433959

ABSTRACT

Physiologically-based pharmacokinetic (PBPK) models are being developed to evaluate whether humans in early life are more or less susceptible to adverse effects than adults from exposure to chemicals because of reduced renal clearance. To support the development of such models, data on the rates of glomerular filtration, tubular secretion, tubular reabsorption, and renal blood flow in neonates and infants were compiled and summarized. All three processes are deficient in the newborn with varying maturation rates during the first months and years of life. Glomerular filtration rate (GFR) has traditionally been the primary indicator of kidney function, and in full-term neonates (<1-month-old) is about 30% of the adult level, subsequently approaching adult rates between 6 months and 1 year of age. Tubular secretion is around 25% of adult levels at birth, and increases more slowly and more variably than GFR, not approaching adult levels until 1-5 years of age. Limited data on renal plasma flow indicate neonatal rates of only 10-20% of adult values that rapidly increase to 50% by 6 months, and then approach adult levels by 1-2 years of age. Examples of PBPK model representations of renal clearance for chemicals that are primarily cleared by the kidneys are discussed in terms of their use in evaluating early life stage susceptibility.


Subject(s)
Environmental Pollutants/pharmacokinetics , Kidney/metabolism , Models, Biological , Xenobiotics/pharmacokinetics , Adolescent , Adult , Animals , Animals, Newborn , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Kidney Function Tests , Metabolic Clearance Rate , Rats
7.
Toxicol Sci ; 99(2): 395-402, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17483121

ABSTRACT

Physiologically based pharmacokinetic (PBPK) models are used in mode-of-action based risk and safety assessments to estimate internal dosimetry in animals and humans. When used in risk assessment, these models can provide a basis for extrapolating between species, doses, and exposure routes or for justifying nondefault values for uncertainty factors. Characterization of uncertainty and variability is increasingly recognized as important for risk assessment; this represents a continuing challenge for both PBPK modelers and users. Current practices show significant progress in specifying deterministic biological models and nondeterministic (often statistical) models, estimating parameters using diverse data sets from multiple sources, using them to make predictions, and characterizing uncertainty and variability of model parameters and predictions. The International Workshop on Uncertainty and Variability in PBPK Models, held 31 Oct-2 Nov 2006, identified the state-of-the-science, needed changes in practice and implementation, and research priorities. For the short term, these include (1) multidisciplinary teams to integrate deterministic and nondeterministic/statistical models; (2) broader use of sensitivity analyses, including for structural and global (rather than local) parameter changes; and (3) enhanced transparency and reproducibility through improved documentation of model structure(s), parameter values, sensitivity and other analyses, and supporting, discrepant, or excluded data. Longer-term needs include (1) theoretical and practical methodological improvements for nondeterministic/statistical modeling; (2) better methods for evaluating alternative model structures; (3) peer-reviewed databases of parameters and covariates, and their distributions; (4) expanded coverage of PBPK models across chemicals with different properties; and (5) training and reference materials, such as cases studies, bibliographies/glossaries, model repositories, and enhanced software. The multidisciplinary dialogue initiated by this Workshop will foster the collaboration, research, data collection, and training necessary to make characterizing uncertainty and variability a standard practice in PBPK modeling and risk assessment.


Subject(s)
Models, Biological , Pharmacokinetics , Animals , Calibration , Humans , Reproducibility of Results , Risk Assessment
8.
J Appl Toxicol ; 27(3): 218-37, 2007.
Article in English | MEDLINE | ID: mdl-17299829

ABSTRACT

Physiologically based pharmacokinetic (PBPK) models are sophisticated dosimetry models that offer great flexibility in modeling exposure scenarios for which there are limited data. This is particularly of relevance to assessing human exposure to environmental toxicants, which often requires a number of extrapolations across species, route, or dose levels. The continued development of PBPK models ensures that regulatory agencies will increasingly experience the need to evaluate available models for their application in risk assessment. To date, there are few published criteria or well-defined standards for evaluating these models. Herein, important considerations for evaluating such models are described. The evaluation of PBPK models intended for risk assessment applications should include a consideration of: model purpose, model structure, mathematical representation, parameter estimation, computer implementation, predictive capacity and statistical analyses. Model purpose and structure require qualitative checks on the biological plausibility of a model. Mathematical representation, parameter estimation, computer implementation involve an assessment of the coding of the model, as well as the selection and justification of the physical, physicochemical and biochemical parameters chosen to represent a biological organism. Finally, the predictive capacity and sensitivity, variability and uncertainty of the model are analysed so that the applicability of a model for risk assessment can be determined. Published in 2007 by John Wiley & Sons, Ltd.


Subject(s)
Hazardous Substances/pharmacokinetics , Models, Biological , Algorithms , Animals , Computer Simulation , Humans , Monitoring, Physiologic/methods , Reproducibility of Results , Risk Assessment/methods
9.
Chem Biol Interact ; 166(1-3): 352-9, 2007 Mar 20.
Article in English | MEDLINE | ID: mdl-17324392

ABSTRACT

Mathematical models are increasingly being used to simulate events in the exposure-response continuum, and to support quantitative predictions of risks to human health. Physiologically based pharmacokinetic (PBPK) models address that portion of the continuum from an external chemical exposure to an internal dose at a target site. Essential data needed to develop a PBPK model include values of key physiological parameters (e.g., tissue volumes, blood flow rates) and chemical specific parameters (rate of chemical absorption, distribution, metabolism, and elimination) for the species of interest. PBPK models are commonly used to: (1) predict concentrations of an internal dose over time at a target site following external exposure via different routes and/or durations; (2) predict human internal concentration at a target site based on animal data by accounting for toxicokinetic and physiological differences; and (3) estimate variability in the internal dose within a human population resulting from differences in individual pharmacokinetics. Himmelstein et al. [M.W. Himmelstein, S.C. Carpenter, P.M. Hinderliter, Kinetic modeling of beta-chloroprene metabolism. I. In vitro rates in liver and lung tissue fractions from mice, rats, hamsters, and humans, Toxicol. Sci. 79 (1) (2004) 18-27; M.W. Himmelstein, S.C. Carpenter, M.V. Evans, P.M. Hinderliter, E.M. Kenyon, Kinetic modeling of beta-chloroprene metabolism. II. The application of physiologically based modeling for cancer dose response analysis, Toxicol. Sci. 79 (1) (2004) 28-37] developed a PBPK model for chloroprene (2-chloro-1,3-butadiene; CD) that simulates chloroprene disposition in rats, mice, hamsters, or humans following an inhalation exposure. Values for the CD-PBPK model metabolic parameters were obtained from in vitro studies, and model simulations compared to data from in vivo gas uptake studies in rats, hamsters, and mice. The model estimate for total amount of metabolite in lung correlated better with rodent tumor incidence than did the external dose. Based on this PBPK model analytical approach, Himmelstein et al. [M.W. Himmelstein, S.C. Carpenter, M.V. Evans, P.M. Hinderliter, E.M. Kenyon, Kinetic modeling of beta-chloroprene metabolism. II. The application of physiologically based modeling for cancer dose response analysis, Toxicol. Sci. 79 (1) (2004) 28-37; M.W. Himmelstein, R. Leonard, R. Valentine, Kinetic modeling of beta-chloroprene metabolism: default and physiologically-based modeling approaches for cancer dose response, in: IISRP Symposium on Evaluation of Butadiene & Chloroprene Health Effects, September 21, 2005, TBD--reference in this proceedings issue of Chemical-Biological Interactions] propose that observed species differences in the lung tumor dose-response result from differences in CD metabolic rates. The CD-PBPK model has not yet been submitted to EPA for use in developing the IRIS assessment for chloroprene, but is sufficiently developed to be considered. The process that EPA uses to evaluate PBPK models is discussed, as well as potential applications for the CD-PBPK model in an IRIS assessment.


Subject(s)
Chloroprene/metabolism , Models, Biological , Animals , Butadienes , Chloroprene/pharmacokinetics , Humans , Risk Assessment
10.
Qual Assur ; 10(1): 29-65, 2003.
Article in English | MEDLINE | ID: mdl-12746157

ABSTRACT

The Internet continues to provide an excellent resource for information on quality assurance concepts, regulations, and practices. A search using just the word "quality" produced over 42 million hits. The combination of "quality" and "assurance" yielded over 2 million hits. Presented here is a sampling of 100 quality assurance sites organized alphabetically by site name, and accompanied by a brief description of the information available at the site. The choice of which sites to include was based on the author's experience and familiarity with the QA profession, and was aimed towards providing examples in active areas of QA including business and manufacturing, good practice regulations (i.e., GxPs), information quality, medical practice, software quality, higher education, and quality of research. The 100 sites provide access to a broad array of documents, services, forums, and opportunities to exchange ideas, and include links to major national regulatory and standard setting bodies around the world.


Subject(s)
Internet , Quality Assurance, Health Care , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...