Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Trends Ecol Evol ; 36(4): 308-320, 2021 04.
Article in English | MEDLINE | ID: mdl-33229137

ABSTRACT

Resource tracking, where animals increase energy gain by moving to track phenological variation in resources across space, is emerging as a fundamental attribute of animal movement ecology. However, a theoretical framework to understand when and where resource tracking should occur, and how resource tracking should lead to emergent ecological patterns, is lacking. We present a framework that unites concepts from optimal foraging theory and landscape ecology, which can be used to generate and test predictions on how resource dynamics shape animal movement across taxa, systems, and scales. Consideration of the interplay between animal movement and resource dynamics not only advances ecological understanding but can also guide biodiversity conservation in an era of global change.


Subject(s)
Ecology , Ecosystem , Animals , Biodiversity , Movement
2.
PLoS One ; 14(9): e0222085, 2019.
Article in English | MEDLINE | ID: mdl-31504063

ABSTRACT

Aerial surveys are often used to monitor wildlife and fish populations, but rarely are the effects on animal behavior documented. For over 30 years, the Kodiak National Wildlife Refuge has conducted low-altitude aerial surveys to assess Kodiak brown bear (Ursus arctos middendorffi) space use and demographic composition when bears are seasonally congregated near salmon spawning streams in southwestern Kodiak Island, Alaska. Salmon (Oncorhynchus spp.) are an important bear food and salmon runs are brief, so decreases in time spent fishing for salmon may reduce salmon consumption by bears. The goal of this study was to apply different and complementary field methods to evaluate the response of bears to these aerial surveys. Ground-based counts at one stream indicated 62% of bears departed the 200m-wide survey zone in response to aerial surveys, but bear counts returned to pre-survey abundance after only three hours. Although this effect was brief, survey flights occurred during the hours of peak daily bear activity (morning and evening), so the three-hour disruption appeared to result in a 25% decline in cumulative daily detections by 38 time-lapse cameras deployed along 10 salmon streams. Bear responses varied by sex-male bears were much more likely than female bears (with or without cubs) to depart streams and female bears with GPS collars did not move from streams following surveys. Although bears displaced by aerial surveys may consume fewer salmon, the actual effect on their fitness depends on whether they compensate by foraging at other times or by switching to other nutritious resources. Data from complementary sources allows managers to more robustly understand the impacts of surveys and whether their benefits are justified. Similar assessments should be made on alternative techniques such as Unmanned Aerial Vehicles and non-invasive sampling to determine whether they supply equivalent data while limiting bear disturbance.


Subject(s)
Animal Distribution , Ecosystem , Remote Sensing Technology/adverse effects , Salmon/physiology , Ursidae/physiology , Alaska , Animals , Biomass , Female , Male , Remote Sensing Technology/methods , Remote Sensing Technology/standards , Rivers
3.
Sci Rep ; 8(1): 11008, 2018 07 20.
Article in English | MEDLINE | ID: mdl-30030526

ABSTRACT

There is growing interest in the ecological significance of phenological diversity, particularly in how spatially variable resource phenologies (i.e. resource waves) prolong foraging opportunities for mobile consumers. While there is accumulating evidence of consumers moving across landscapes to surf resource waves, there is little data quantifying how phenological tracking influences resource consumption due to the challenge of documenting all the components of this ecological phenomenon (i.e., phenological variation, consumer movement, resource consumption, and consumer fitness). We examined the space use of GPS collared female brown bears to quantify the exploitation of a salmon resource wave by individual bears. We then estimated salmon consumption levels in the same individuals using stable isotope and mercury analyses of hair. We found strong positive relationships between time spent on salmon streams and percent salmon in assimilated diets (R2 = 0.70) and salmon mass consumed (R2 = 0.49). Salmon abundance varied 2.5-fold between study years, yet accounting for salmon abundance did not improve salmon consumption models. Resource abundance generally is viewed as the key variable controlling consumption levels and food web dynamics. However, our results suggest that in intact watersheds of coastal Alaska with abundant salmon runs, interannual variation in salmon abundance likely has less effect on salmon consumption than individual variation in bear foraging behavior. The results complement previous work to demonstrate the importance of phenological variation on bear foraging behavior and fitness.


Subject(s)
Eating , Food Chain , Salmon , Ursidae/physiology , Alaska , Animals , Behavior, Animal , Diet/trends , Female , Rivers
4.
Proc Natl Acad Sci U S A ; 114(39): 10432-10437, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28827339

ABSTRACT

Climate change is altering the seasonal timing of life cycle events in organisms across the planet, but the magnitude of change often varies among taxa [Thackeray SJ, et al. (2016) Nature 535:241-245]. This can cause the temporal relationships among species to change, altering the strength of interaction. A large body of work has explored what happens when coevolved species shift out of sync, but virtually no studies have documented the effects of climate-induced synchronization, which could remove temporal barriers between species and create novel interactions. We explored how a predator, the Kodiak brown bear (Ursus arctos middendorffi), responded to asymmetric phenological shifts between its primary trophic resources, sockeye salmon (Oncorhynchus nerka) and red elderberry (Sambucus racemosa). In years with anomalously high spring air temperatures, elderberry fruited several weeks earlier and became available during the period when salmon spawned in tributary streams. Bears departed salmon spawning streams, where they typically kill 25-75% of the salmon [Quinn TP, Cunningham CJ, Wirsing AJ (2016) Oecologia 183:415-429], to forage on berries on adjacent hillsides. This prey switching behavior attenuated an iconic predator-prey interaction and likely altered the many ecological functions that result from bears foraging on salmon [Helfield JM, Naiman RJ (2006) Ecosystems 9:167-180]. We document how climate-induced shifts in resource phenology can alter food webs through a mechanism other than trophic mismatch. The current emphasis on singular consumer-resource interactions fails to capture how climate-altered phenologies reschedule resource availability and alter how energy flows through ecosystems.


Subject(s)
Climate Change , Feeding Behavior/physiology , Food Chain , Predatory Behavior/physiology , Animals , Salmon , Sambucus , Ursidae
5.
PeerJ ; 4: e2120, 2016.
Article in English | MEDLINE | ID: mdl-27326378

ABSTRACT

Accurately estimating population sizes is often a critical component of fisheries research and management. Although there is a growing appreciation of the importance of small-scale salmon population dynamics to the stability of salmon stock-complexes, our understanding of these populations is constrained by a lack of efficient and cost-effective monitoring tools for streams. Weirs are expensive, labor intensive, and can disrupt natural fish movements. While conventional video systems avoid some of these shortcomings, they are expensive and require excessive amounts of labor to review footage for data collection. Here, we present a novel method for quantifying salmon in small streams (<15 m wide, <1 m deep) that uses both time-lapse photography and video in a model-based double sampling scheme. This method produces an escapement estimate nearly as accurate as a video-only approach, but with substantially less labor, money, and effort. It requires servicing only every 14 days, detects salmon 24 h/day, is inexpensive, and produces escapement estimates with confidence intervals. In addition to escapement estimation, we present a method for estimating in-stream salmon abundance across time, data needed by researchers interested in predator--prey interactions or nutrient subsidies. We combined daily salmon passage estimates with stream specific estimates of daily mortality developed using previously published data. To demonstrate proof of concept for these methods, we present results from two streams in southwest Kodiak Island, Alaska in which high densities of sockeye salmon spawn.

6.
Ecology ; 97(5): 1091-8, 2016 May.
Article in English | MEDLINE | ID: mdl-27349087

ABSTRACT

A key constraint faced by consumers is achieving a positive energy balance in the face of temporal variation in foraging opportunities. Recent work has shown that spatial heterogeneity in resource phenology can buffer mobile consumers from this constraint by allowing them to track changes in resource availability across space. For example, salmon populations spawn asynchronously across watersheds, causing high-quality foraging opportunities to propagate across the landscape, prolonging the availability of salmon at the regional scale. However, we know little about how individual consumers integrate across phenological variation or the benefits they receive by doing so. Here, we present direct evidence that individual brown bears track spatial variation in salmon phenology. Data from 40 GPS collared brown bears show that bears visited multiple spawning sites in synchrony with the order of spawning phenology. The number of sites used was correlated with the number of days a bear exploited salmon, suggesting the phenological variation in the study area influenced bear access to salmon, a resource which strongly influences bear fitness. Fisheries managers attempting to maximize harvest while maintaining ecosystem function should strive to protect the population diversity that underlies the phenological variation used by wildlife consumers.


Subject(s)
Animal Identification Systems/instrumentation , Animal Migration/physiology , Feeding Behavior/physiology , Salmon/physiology , Ursidae/physiology , Alaska , Animals , Geographic Information Systems , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...