Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 114(31): 8241-8246, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28716944

ABSTRACT

Human ribonucleotide reductase (hRR) is crucial for DNA replication and maintenance of a balanced dNTP pool, and is an established cancer target. Nucleoside analogs such as gemcitabine diphosphate and clofarabine nucleotides target the large subunit (hRRM1) of hRR. These drugs have a poor therapeutic index due to toxicity caused by additional effects, including DNA chain termination. The discovery of nonnucleoside, reversible, small-molecule inhibitors with greater specificity against hRRM1 is a key step in the development of more effective treatments for cancer. Here, we report the identification and characterization of a unique nonnucleoside small-molecule hRR inhibitor, naphthyl salicylic acyl hydrazone (NSAH), using virtual screening, binding affinity, inhibition, and cell toxicity assays. NSAH binds to hRRM1 with an apparent dissociation constant of 37 µM, and steady-state kinetics reveal a competitive mode of inhibition. A 2.66-Å resolution crystal structure of NSAH in complex with hRRM1 demonstrates that NSAH functions by binding at the catalytic site (C-site) where it makes both common and unique contacts with the enzyme compared with NDP substrates. Importantly, the IC50 for NSAH is within twofold of gemcitabine for growth inhibition of multiple cancer cell lines, while demonstrating little cytotoxicity against normal mobilized peripheral blood progenitor cells. NSAH depresses dGTP and dATP levels in the dNTP pool causing S-phase arrest, providing evidence for RR inhibition in cells. This report of a nonnucleoside reversible inhibitor binding at the catalytic site of hRRM1 provides a starting point for the design of a unique class of hRR inhibitors.


Subject(s)
Hydrazones/pharmacology , Naphthalenes/pharmacology , Ribonucleotide Reductases/antagonists & inhibitors , Salicylates/pharmacology , Catalytic Domain , Cell Cycle/drug effects , Crystallography, X-Ray , Deoxyadenine Nucleotides/metabolism , Drug Screening Assays, Antitumor/methods , Humans , Hydrazones/chemistry , Naphthalenes/chemistry , Ribonucleoside Diphosphate Reductase , Ribonucleotide Reductases/chemistry , Ribonucleotide Reductases/metabolism , Salicylates/chemistry , Tumor Suppressor Proteins/antagonists & inhibitors , Tumor Suppressor Proteins/chemistry , Tumor Suppressor Proteins/metabolism
2.
J Med Chem ; 58(24): 9498-509, 2015 Dec 24.
Article in English | MEDLINE | ID: mdl-26488902

ABSTRACT

Ribonucleotide reductase (RR) catalyzes the rate-limiting step of dNTP synthesis and is an established cancer target. Drugs targeting RR are mainly nucleoside in nature. In this study, we sought to identify non-nucleoside small-molecule inhibitors of RR. Using virtual screening, binding affinity, inhibition, and cell toxicity, we have discovered a class of small molecules that alter the equilibrium of inactive hexamers of RR, leading to its inhibition. Several unique chemical categories, including a phthalimide derivative, show micromolar IC50s and KDs while demonstrating cytotoxicity. A crystal structure of an active phthalimide binding at the targeted interface supports the noncompetitive mode of inhibition determined by kinetic studies. Furthermore, the phthalimide shifts the equilibrium from dimer to hexamer. Together, these data identify several novel non-nucleoside inhibitors of human RR which act by stabilizing the inactive form of the enzyme.


Subject(s)
Antineoplastic Agents/chemistry , Ribonucleotide Reductases/antagonists & inhibitors , Tumor Suppressor Proteins/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Computer Simulation , Crystallography, X-Ray , Databases, Chemical , Drug Screening Assays, Antitumor , Humans , Molecular Docking Simulation , Phthalimides/chemistry , Phthalimides/pharmacology , Protein Binding , Protein Conformation , Protein Multimerization , Ribonucleoside Diphosphate Reductase , Ribonucleotide Reductases/chemistry , Structure-Activity Relationship , Tumor Suppressor Proteins/chemistry
3.
J Mol Biol ; 419(5): 315-29, 2012 Jun 22.
Article in English | MEDLINE | ID: mdl-22465672

ABSTRACT

Ribonucleotide reductases (RRs) catalyze the rate-limiting step of de novo deoxynucleotide (dNTP) synthesis. Eukaryotic RRs consist of two proteins, RR1 (α) that contains the catalytic site and RR2 (ß) that houses a diferric-tyrosyl radical essential for ribonucleoside diphosphate reduction. Biochemical analysis has been combined with isothermal titration calorimetry (ITC), X-ray crystallography and yeast genetics to elucidate the roles of two loop 2 mutations R293A and Q288A in Saccharomyces cerevisiae RR1 (ScRR1). These mutations, R293A and Q288A, cause lethality and severe S phase defects, respectively, in cells that use ScRR1 as the sole source of RR1 activity. Compared to the wild-type enzyme activity, R293A and Q288A mutants show 4% and 15%, respectively, for ADP reduction, whereas they are 20% and 23%, respectively, for CDP reduction. ITC data showed that R293A ScRR1 is unable to bind ADP and binds CDP with 2-fold lower affinity compared to wild-type ScRR1. With the Q288A ScRR1 mutant, there is a 6-fold loss of affinity for ADP binding and a 2-fold loss of affinity for CDP compared to the wild type. X-ray structures of R293A ScRR1 complexed with dGTP and AMPPNP-CDP [AMPPNP, adenosine 5-(ß,γ-imido)triphosphate tetralithium salt] reveal that ADP is not bound at the catalytic site, and CDP binds farther from the catalytic site compared to wild type. Our in vivo functional analyses demonstrated that R293A cannot support mitotic growth, whereas Q288A can, albeit with a severe S phase defect. Taken together, our structure, activity, ITC and in vivo data reveal that the arginine 293 and glutamine 288 residues of ScRR1 are crucial in facilitating ADP and CDP substrate selection.


Subject(s)
Arginine/chemistry , Glutamine/chemistry , Ribonucleotide Reductases/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/enzymology , Adenosine Diphosphate/chemistry , Allosteric Site , Arginine/genetics , Catalytic Domain , Crystallography, X-Ray , Cytidine Diphosphate/chemistry , Glutamine/genetics , Models, Molecular , Mutation , Protein Binding , Ribonucleotide Reductases/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Substrate Specificity
4.
Nat Struct Mol Biol ; 18(3): 316-22, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21336276

ABSTRACT

Ribonucleotide reductase (RR) is an α(n)ß(n) (RR1-RR2) complex that maintains balanced dNTP pools by reducing NDPs to dNDPs. RR1 is the catalytic subunit, and RR2 houses the free radical required for catalysis. RR is allosterically regulated by its activator ATP and its inhibitor dATP, which regulate RR activity by inducing oligomerization of RR1. Here, we report the first X-ray structures of human RR1 bound to TTP alone, dATP alone, TTP-GDP, TTP-ATP, and TTP-dATP. These structures provide insights into regulation of RR by ATP or dATP. At physiological dATP concentrations, RR1 forms inactive hexamers. We determined the first X-ray structure of the RR1-dATP hexamer and used single-particle electron microscopy to visualize the α(6)-ßß'-dATP holocomplex. Site-directed mutagenesis and functional assays confirm that hexamerization is a prerequisite for inhibition by dATP. Our data indicate a mechanism for regulating RR activity by dATP-induced oligomerization.


Subject(s)
Catalytic Domain , Nucleotides/metabolism , Ribonucleotide Reductases/chemistry , Ribonucleotide Reductases/metabolism , Saccharomyces cerevisiae/enzymology , Allosteric Regulation , Crystallography, X-Ray , Deoxyadenine Nucleotides/chemistry , Deoxyadenine Nucleotides/metabolism , Humans , Models, Molecular , Mutagenesis, Site-Directed , Nucleotides/chemistry , Protein Multimerization , Ribonucleotide Reductases/genetics , Saccharomyces cerevisiae/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...