Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Free Radic Biol Med ; 165: 254-264, 2021 03.
Article in English | MEDLINE | ID: mdl-33515755

ABSTRACT

Human serum albumin (HSA) contains 17 disulfides and only one reduced cysteine, Cys34, which can be oxidized to a relatively stable sulfenic acid (HSA-SOH). This derivative has been previously detected and quantified. However, its properties are poorly understood. Herein, HSA-SOH formation from the exposure of HSA to hydrogen peroxide was confirmed using the sulfenic acid probe bicyclo [6.1.0]nonyne-biotin (BCN-Bio1), and by direct detection by whole protein mass spectrometry. The decay pathways of HSA-SOH were studied. HSA-SOH reacted with a thiol leading to the formation of a mixed disulfide. The reaction occurred through a concerted or direct displacement mechanism (SN2) with the thiolate (RS-) as nucleophile towards HSA-SOH. The net charge of the thiolate affected the value of the rate constant. In the presence of hydrogen peroxide, HSA-SOH was further oxidized to sulfinic acid (HSA-SO2H) and sulfonic acid (HSA-SO3H). The rate constants of these reactions were estimated. Lastly, HSA-SOH spontaneously decayed in solution. Mass spectrometry experiments suggested that the decay product is a sulfenylamide (HSA-SN(R')R″). Chromatofocusing analysis showed that the overoxidation with hydrogen peroxide predominates at alkaline pH whereas the spontaneous decay predominates at acidic pH. The present findings provide insights into the reactivity and fate of the sulfenic acid in albumin, which are also of relevance to numerous sulfenic acid-mediated processes in redox biology and catalysis.


Subject(s)
Sulfenic Acids , Sulfhydryl Compounds , Cysteine , Humans , Oxidation-Reduction , Serum Albumin/metabolism , Serum Albumin, Human
2.
PLoS Pathog ; 15(9): e1008065, 2019 09.
Article in English | MEDLINE | ID: mdl-31557263

ABSTRACT

Most known thioredoxin-type proteins (Trx) participate in redox pathways, using two highly conserved cysteine residues to catalyze thiol-disulfide exchange reactions. Here we demonstrate that the so far unexplored Trx2 from African trypanosomes (Trypanosoma brucei) lacks protein disulfide reductase activity but functions as an effective temperature-activated and redox-regulated chaperone. Immunofluorescence microscopy and fractionated cell lysis revealed that Trx2 is located in the mitochondrion of the parasite. RNA-interference and gene knock-out approaches showed that depletion of Trx2 impairs growth of both mammalian bloodstream and insect stage procyclic parasites. Procyclic cells lacking Trx2 stop proliferation under standard culture conditions at 27°C and are unable to survive prolonged exposure to 37°C, indicating that Trx2 plays a vital role that becomes augmented under heat stress. Moreover, we found that Trx2 contributes to the in vivo infectivity of T. brucei. Remarkably, a Trx2 version, in which all five cysteines were replaced by serine residues, complements for the wildtype protein in conditional knock-out cells and confers parasite infectivity in the mouse model. Characterization of the recombinant protein revealed that Trx2 can coordinate an iron sulfur cluster and is highly sensitive towards spontaneous oxidation. Moreover, we discovered that both wildtype and mutant Trx2 protect other proteins against thermal aggregation and preserve their ability to refold upon return to non-stress conditions. Activation of the chaperone function of Trx2 appears to be triggered by temperature-mediated structural changes and inhibited by oxidative disulfide bond formation. Our studies indicate that Trx2 acts as a novel chaperone in the unique single mitochondrion of T. brucei and reveal a new perspective regarding the physiological function of thioredoxin-type proteins in trypanosomes.


Subject(s)
Protozoan Proteins/metabolism , Thioredoxins/metabolism , Trypanosoma brucei brucei/metabolism , Animals , Gene Knockdown Techniques , Genes, Protozoan , Humans , Mitochondrial Proteins/antagonists & inhibitors , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Molecular Chaperones/antagonists & inhibitors , Molecular Chaperones/genetics , Molecular Chaperones/metabolism , Mutation , Oxidation-Reduction , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/genetics , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Thioredoxins/antagonists & inhibitors , Thioredoxins/genetics , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/pathogenicity
3.
J Biol Chem ; 294(9): 3235-3248, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30593501

ABSTRACT

Trypanosomes are flagellated protozoan parasites (kinetoplastids) that have a unique redox metabolism based on the small dithiol trypanothione (T(SH)2). Although GSH may still play a biological role in trypanosomatid parasites beyond being a building block of T(SH)2, most of its functions are replaced by T(SH)2 in these organisms. Consequently, trypanosomes have several enzymes adapted to using T(SH)2 instead of GSH, including the glutaredoxins (Grxs). However, the mechanistic basis of Grx specificity for T(SH)2 is unknown. Here, we combined fast-kinetic and biophysical approaches, including NMR, MS, and fluorescent tagging, to study the redox function of Grx1, the only cytosolic redox-active Grx in trypanosomes. We observed that Grx1 reduces GSH-containing disulfides (including oxidized trypanothione) in very fast reactions (k > 5 × 105 m-1 s-1). We also noted that disulfides without a GSH are much slower oxidants, suggesting a strongly selective binding of the GSH molecule. Not surprisingly, oxidized Grx1 was also reduced very fast by T(SH)2 (4.8 × 106 m-1 s-1); however, GSH-mediated reduction was extremely slow (39 m-1 s-1). This kinetic selectivity in the reduction step of the catalytic cycle suggests that Grx1 uses preferentially a dithiol mechanism, forming a disulfide on the active site during the oxidative half of the catalytic cycle and then being rapidly reduced by T(SH)2 in the reductive half. Thus, the reduction of glutathionylated substrates avoids GSSG accumulation in an organism lacking GSH reductase. These findings suggest that Grx1 has played an important adaptive role during the rewiring of the thiol-redox metabolism of kinetoplastids.


Subject(s)
Biological Evolution , Glutaredoxins/metabolism , Sulfhydryl Compounds/metabolism , Trypanosoma/metabolism , Animals , Catalytic Domain , Glutaredoxins/chemistry , Humans , Kinetics , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...