Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Endod ; 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37611655

ABSTRACT

INTRODUCTION: The extrusion of bacteria from infected root canals may lead to increase in symptoms, expansion of periapical lesions, and contribution to systemic diseases. The aim of this study is to investigate a potential proof-of-concept model to study the extent to which bacteria can escape from infected root canals under dynamic loading (simulated chewing). METHODS: The study was completed in 2 experiments performed at 2 institutions. Biofilms of Streptococcus intermedius in the first experiment and S. intermedius and Actinomyces naeslundii were allowed to grow in root canals of single-rooted extracted teeth for 3 weeks. The roots of the teeth were suspended in a small chamber containing dental transport medium and were mounted on a lower sample holder of a chewing simulator. In the experimental group, simulated chewing cycles equivalent to 1 year of function were conducted, and then bacterial migration was quantified and compared with stationary teeth. RESULTS: All experimental samples of the loading group revealed bacterial penetration in both experiments. Several of the unloaded samples revealed no bacterial penetration. In the first experiment, a significantly higher number of bacteria were able to escape into the periapex of the loaded group compared with the unloaded group (P = .017). In the second experiment, there was no significant difference between the 2 bacterial species used in the amount of extruded bacteria; however, there was a highly significant effect for occlusal loading (P = .0001). CONCLUSIONS: The potential for occlusal forces to enhance bacterial extrusion from infected root canals should be further explored.

2.
J Phys Chem B ; 126(8): 1655-1667, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35175769

ABSTRACT

Lignin derived from lignocellulosic biomass is the largest source of renewable bioaromatics present on earth and requires environmentally sustainable separation strategies to selectively obtain high-value degradation products. Applications of supramolecular interactions have the potential to isolate lignin compounds from biomass degradation fractions by the formation of variable inclusion complexes with cyclodextrins (CDs). CDs are commonly used as selective adsorbents for many applications and can capture guest molecules in their internal hydrophobic cavity. The strength of supramolecular interactions between CDs and lignin model compounds that represent potential lignocellulosic biomass degradation products can be characterized by assessing the thermodynamics of binding stability. Consequently, the inclusion interactions of ß-CD and lignin model compounds G-(ß-O-4')-G, G-(ß-O-4')-truncG (guaiacylglycerol-ß-guaiacyl ether), and G-(ß-ß')-G (pinoresinol) were investigated empirically by electrospray ionization mass spectrometry and isothermal titration calorimetry, complemented by molecular dynamics (MD) simulations. Empirical results indicate that there are substantial differences in binding stability dependent on the linkage type. The lignin model ß-ß' dimer showed more potential bound states including 1:1, 2:1, and 1:2 (guest:host) complexation and, based on binding stability determinations, was consistently the most energetically favorable guest. Empirical results are supported by MD simulations that reveal that the capture of G-(ß-ß')-G by ß-CD is promising with a 66% probability of being bound for G-(ß-O-4')-truncG compared to 88% for G-(ß-ß')-G (unbiased distance trajectory and explicit counting of bound states). These outcomes indicate CDs as a promising material to assist in separations of lignin oligomers from heterogeneous mixtures for the development of environmentally sustainable isolations of lignin compounds from biomass fractions.


Subject(s)
Cyclodextrins , beta-Cyclodextrins , Calorimetry , Cyclodextrins/chemistry , Lignin , Molecular Dynamics Simulation , Polymers , beta-Cyclodextrins/chemistry
3.
Anal Bioanal Chem ; 413(15): 4037-4048, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33934193

ABSTRACT

Lignin and lignans are natural products found in plant cell walls. Lignin research has historically focused on lignin degradation techniques in the hope of converting lignin into useful aromatic carbon feedstocks. In contrast, investigations of lignans existing as natural product dimers, have been focused on thier interesting biological activities. Many lignan compounds are chemically identical to dimers derived from lignin, and both lignin and lignan dimers can possess multiple chiral centers leading to observations of diastereomer pairs where one diastereomer exhibits the bulk of the activity. For example, the G-(ß-O-4')-G dimer was reported to have a pro-angiogenic activity with one diastereomer of the pair showing enhanced pro-angiogenic activity. Traditional analytical techniques such as nuclear magnetic resonance (NMR) can differentiate the diastereomer pairs of ß-O-4 compounds; however, isolation of a pure sample is often required for analysis. This work was aimed at exploring the potential use of tandem mass spectrometry to differentiate diastereomer pairs in the ß-O-4 dimer series. Each diastereomer pair in the nine-dimer series was separated by HPLC and interrogated by tandem mass spectrometry. To understand the chromatographic behavior of the diastereomer pair in the ß-O-4 dimer series, three commercially available reverse phase HPLC columns were evaluated. A temperature programming experiment using water/acetonitrile isocratic elution showed that the chromatographic retention mechanism of these diastereomers was hydrophobically driven with analytes having more methoxy groups exhibiting larger ΔH0 and higher octanol-water partition coefficient values. Tandem mass spectrometry performed on each of the diastereomers produced fragment ions having different ion abundances. A mechanistic study based on the ion abundance of "sequence-specific ions" and "-48 ions" was used to assign a configuration to each of the pairs of diastereomers in the nine-dimer series.


Subject(s)
Chromatography/methods , Lignin/chemistry , Tandem Mass Spectrometry/methods , Dimerization , Stereoisomerism
4.
PLoS One ; 14(1): e0211207, 2019.
Article in English | MEDLINE | ID: mdl-30689658

ABSTRACT

Clinical flow cytometry is a reliable methodology for whole blood cell phenotyping for different applications. The BD FACSLyric™ system comprises a flow cytometer available in different optical configurations, BD FACSuite™ Clinical software, and optional BD FACS™ Universal Loader. BD FACSuite Clinical software used with BD™ FC Beads and BD CS&T Beads enable universal setup for performance QC, instrument control, data acquisition/storage, online/offline data analysis, and instrument standardization. BD Biosciences sponsored the clinical evaluation of the BD FACSLyric 10-color configuration at seven clinical sites using delinked and de-identified blood specimens from HIV-infected and uninfected subjects to enumerate T-, B-, and NK-lymphocytes with the BD Multitest™ reagents (BD Multitest IMK kit and BD Multitest 6-color TBNK). Samples were analyzed on the BD FACSLyric system with BD FACSuite Clinical software, and on the BD FACSCanto™ II system with BD FACSCanto clinical software and BD FACS 7-Color Setup beads. For equivalency between methods, data (n = 362) were analyzed with Deming regression for absolute count and percentage of lymphocytes. Results gave R2 ≥0.98, with slope values ≥0.96, and slope ranges between 0.90-1.05. The percent (%) bias values were <10% for T- and NK cells and <15% for B- cells. The between-site (n = 4) total precision was tested for 5 days (2 runs/day), and gave %coefficient of variation below 10% for absolute cell counts. The stability claims were confirmed (n = 186) for the two BD Multitest reagents. The reference intervals were re-established in male and female adults (n = 134). The analysis by gender showed statistically significant differences for CD3+ and CD4+ T-cell counts and %CD4. In summary, the BD FACSLyric and the BD FACSCanto II systems generated comparable measurements of T-, B-, and NK-cells using BD Multitest assays.


Subject(s)
B-Lymphocytes/cytology , Cell Count/methods , Killer Cells, Natural/cytology , T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/cytology , Cell Count/standards , Flow Cytometry , HIV Infections/blood , HIV Infections/diagnosis , HIV Infections/immunology , Humans , Reagent Kits, Diagnostic , Reference Standards , Reproducibility of Results
5.
Cell ; 166(3): 679-690, 2016 Jul 28.
Article in English | MEDLINE | ID: mdl-27374328

ABSTRACT

Translation elongation efficiency is largely thought of as the sum of decoding efficiencies for individual codons. Here, we find that adjacent codon pairs modulate translation efficiency. Deploying an approach in Saccharomyces cerevisiae that scored the expression of over 35,000 GFP variants in which three adjacent codons were randomized, we have identified 17 pairs of adjacent codons associated with reduced expression. For many pairs, codon order is obligatory for inhibition, implying a more complex interaction than a simple additive effect. Inhibition mediated by adjacent codons occurs during translation itself as GFP expression is restored by increased tRNA levels or by non-native tRNAs with exact-matching anticodons. Inhibition operates in endogenous genes, based on analysis of ribosome profiling data. Our findings suggest translation efficiency is modulated by an interplay between tRNAs at adjacent sites in the ribosome and that this concerted effect needs to be considered in predicting the functional consequences of codon choice.


Subject(s)
Codon , Protein Biosynthesis , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Genes, Fungal , RNA, Fungal/metabolism , RNA, Transfer/metabolism , Ribosomes/metabolism , Saccharomyces cerevisiae Proteins/biosynthesis
6.
Genes Dev ; 28(15): 1721-32, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-25085423

ABSTRACT

Sequence variation in tRNA genes influences the structure, modification, and stability of tRNA; affects translation fidelity; impacts the activity of numerous isodecoders in metazoans; and leads to human diseases. To comprehensively define the effects of sequence variation on tRNA function, we developed a high-throughput in vivo screen to quantify the activity of a model tRNA, the nonsense suppressor SUP4oc of Saccharomyces cerevisiae. Using a highly sensitive fluorescent reporter gene with an ochre mutation, fluorescence-activated cell sorting of a library of SUP4oc mutant yeast strains, and deep sequencing, we scored 25,491 variants. Unexpectedly, SUP4oc tolerates numerous sequence variations, accommodates slippage in tertiary and secondary interactions, and exhibits genetic interactions that suggest an alternative functional tRNA conformation. Furthermore, we used this methodology to define tRNA variants subject to rapid tRNA decay (RTD). Even though RTD normally degrades tRNAs with exposed 5' ends, mutations that sensitize SUP4oc to RTD were found to be located throughout the sequence, including the anti-codon stem. Thus, the integrity of the entire tRNA molecule is under surveillance by cellular quality control machinery. This approach to assess activity at high throughput is widely applicable to many problems in tRNA biology.


Subject(s)
RNA Stability/genetics , RNA, Transfer/genetics , RNA, Transfer/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Flow Cytometry , Genetic Variation , High-Throughput Screening Assays , Mutation/genetics , Nucleic Acid Conformation , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
7.
RNA ; 18(12): 2335-44, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23097427

ABSTRACT

We have developed a robust and sensitive method, called RNA-ID, to screen for cis-regulatory sequences in RNA using fluorescence-activated cell sorting (FACS) of yeast cells bearing a reporter in which expression of both superfolder green fluorescent protein (GFP) and yeast codon-optimized mCherry red fluorescent protein (RFP) is driven by the bidirectional GAL1,10 promoter. This method recapitulates previously reported progressive inhibition of translation mediated by increasing numbers of CGA codon pairs, and restoration of expression by introduction of a tRNA with an anticodon that base pairs exactly with the CGA codon. This method also reproduces effects of paromomycin and context on stop codon read-through. Five key features of this method contribute to its effectiveness as a selection for regulatory sequences: The system exhibits greater than a 250-fold dynamic range, a quantitative and dose-dependent response to known inhibitory sequences, exquisite resolution that allows nearly complete physical separation of distinct populations, and a reproducible signal between different cells transformed with the identical reporter, all of which are coupled with simple methods involving ligation-independent cloning, to create large libraries. Moreover, we provide evidence that there are sequences within a 9-nt library that cause reduced GFP fluorescence, suggesting that there are novel cis-regulatory sequences to be found even in this short sequence space. This method is widely applicable to the study of both RNA-mediated and codon-mediated effects on expression.


Subject(s)
Genetic Techniques , RNA, Fungal/genetics , Regulatory Sequences, Nucleic Acid , Saccharomyces cerevisiae/genetics , Base Sequence , Cell Separation , Codon/genetics , Flow Cytometry , Gene Library , Genes, Reporter , Green Fluorescent Proteins/genetics , Luminescent Proteins/genetics , Paromomycin/pharmacology , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/drug effects , Red Fluorescent Protein
8.
J Invertebr Pathol ; 109(3): 303-6, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22245471

ABSTRACT

Emerald ash borer (EAB), Agrilus planipennis Fairmaire, native to Asia, is killing ash trees (Fraxinus spp.) across 15 states and southeastern Canada. Integrated pest management using biological control is the only viable long-term approach for controlling the spread of EAB outside of host resistance. Three hymenopteran parasitoids, Spathius agrili Yang, Tetrastichus planipennisi Yang, and Oobius agrili Zhang and Huang were discovered attacking EAB in China and were approved for release in the United States in 2007. The objective of this study was to assess susceptibility of the larval parasitoid species S. agrili and T. planipennisi, relative to that of EAB, to Beauveria bassiana, an entomopathogenic fungus that infects and kills EAB adults when sprayed on ash bark or foliage. Adult EAB and parasitoids were exposed to B. bassiana inoculated ash twigs for 2 h and then monitored daily for death and signs of infection for up to 10 days. All EAB adults exposed to B. bassiana were fatally infected while mean survival for control EAB was 77%. Average survival in the treatment groups for T. planipennisi and S. agrili were 99% and 83%, respectively, indicating these parasitoids are relatively unaffected by exposure to B. bassiana. This research elucidates interactions between a fungal pathogen and two parasitoids of EAB, and provides data necessary to developing a successful multi-stage integrated management approach to control of EAB.


Subject(s)
Beauveria , Coleoptera/parasitology , Hymenoptera , Pest Control, Biological/methods , Animals
9.
RNA ; 16(12): 2516-28, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20971810

ABSTRACT

The choice of synonymous codons used to encode a polypeptide contributes to substantial differences in translation efficiency between genes. However, both the magnitude and the mechanisms of codon-mediated effects are unknown, as neither the effects of individual codons nor the parameters that modulate codon-mediated regulation are understood, particularly in eukaryotes. To explore this problem in Saccharomyces cerevisiae, we performed the first systematic analysis of codon effects on expression. We find that the arginine codon CGA is strongly inhibitory, resulting in progressively and sharply reduced expression with increased CGA codon dosage. CGA-mediated inhibition of expression is primarily due to wobble decoding of CGA, since it is nearly completely suppressed by coexpression of an exact match anticodon-mutated tRNA(Arg(UCG)), and is associated with generation of a smaller RNA fragment, likely due to endonucleolytic cleavage at a stalled ribosome. Moreover, CGA codon pairs are more effective inhibitors of expression than individual CGA codons. These results directly implicate decoding by the ribosome and interactions at neighboring sites within the ribosome as mediators of codon-specific translation efficiency.


Subject(s)
Anticodon/metabolism , Base Pairing/physiology , Codon/metabolism , Protein Biosynthesis/genetics , Saccharomyces cerevisiae/genetics , Anticodon/chemistry , Base Sequence , Codon/chemistry , Codon/pharmacology , Dose-Response Relationship, Drug , Down-Regulation/drug effects , Efficiency , Meta-Analysis as Topic , Models, Biological , Models, Genetic , Molecular Sequence Data , Nucleic Acid Conformation , Protein Biosynthesis/drug effects , RNA, Transfer/chemistry , RNA, Transfer/genetics , RNA, Transfer/metabolism , Saccharomyces cerevisiae/metabolism , Yeasts/genetics , Yeasts/metabolism
10.
Mol Cell ; 11(3): 721-9, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12667454

ABSTRACT

Methylation of histone proteins is one of their many modifications that affect chromatin structure and regulate gene expression. Methylation of histone H3 on lysines 4 and 79, catalyzed by the Set1-containing complex COMPASS and Dot1p, respectively, is required for silencing of expression of genes located near chromosome telomeres in yeast. We report that the Paf1 protein complex, which is associated with the elongating RNA polymerase II, is required for methylation of lysines 4 and 79 of histone H3 and for silencing of expression of a telomere-associated gene. We show that the Paf1 complex is required for recruitment of the COMPASS methyltransferase to RNA polymerase II and that the subunits of these complexes interact physically and genetically. Collectively, our results suggest that the Paf1 complex is required for histone H3 methylation, therefore linking transcriptional elongation to chromatin methylation.


Subject(s)
DNA-Binding Proteins/metabolism , Genome, Fungal , Histone-Lysine N-Methyltransferase , Histones/metabolism , Methyltransferases/metabolism , Nuclear Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/genetics , Transcription Factors/metabolism , Transcription, Genetic , Blotting, Western , Chromatin/metabolism , DNA Methylation , Electrophoresis, Polyacrylamide Gel , Gene Silencing , Histone Methyltransferases , Lysine/chemistry , Methylation , Methyltransferases/chemistry , Models, Genetic , Mutation , Precipitin Tests , Protein Binding , Protein Methyltransferases , Proteome , RNA Polymerase II/metabolism , Saccharomyces cerevisiae/metabolism , Telomere/metabolism
11.
Mol Cell ; 11(1): 267-74, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12535539

ABSTRACT

Ubiquitination of histone H2B catalyzed by Rad6 is required for methylation of histone H3 by COMPASS. We identified Bre1 as the probable E3 for Rad6's role in transcription. Bre1 contains a C3HC4 (RING) finger and is present with Rad6 in a complex. The RING finger of Bre1 is required for ubiquitination of histone H2B, methylation of lysine 4 and 79 of H3 and for telomeric silencing. Chromatin immunoprecipitation experiments indicated that both Rad6 and Bre1 are recruited to a promoter. Bre1 is essential for this recruitment of Rad6 and is dedicated to the transcriptional pathway of Rad6. These results suggest that Bre1 is the likely E3 enzyme that directs Rad6 to modify chromatin and ultimately to affect gene expression.


Subject(s)
Ligases/metabolism , Promoter Regions, Genetic , Saccharomyces cerevisiae Proteins/metabolism , Amino Acid Sequence , Gene Silencing , Histones/metabolism , Ligases/genetics , Lysine/metabolism , Methylation , Molecular Sequence Data , Open Reading Frames , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Sequence Alignment , Telomere/metabolism , Ubiquitin/metabolism , Ubiquitin-Conjugating Enzymes , Ubiquitin-Protein Ligases
12.
J Biol Chem ; 277(32): 28368-71, 2002 Aug 09.
Article in English | MEDLINE | ID: mdl-12070136

ABSTRACT

The DNA of eukaryotes is wrapped around nucleosomes and packaged into chromatin. Covalent modifications of the histone proteins that comprise the nucleosome alter chromatin structure and have major effects on gene expression. Methylation of lysine 4 of histone H3 by COMPASS is required for silencing of genes located near chromosome telomeres and within the rDNA (Krogan, N. J, Dover, J., Khorrami, S., Greenblatt, J. F., Schneider, J., Johnston, M., and Shilatifard, A. (2002) J. Biol. Chem. 277, 10753-10755; Briggs, S. D., Bryk, M., Strahl, B. D., Cheung, W. L., Davie, J. K., Dent, S. Y., Winston, F., and Allis, C. D. (2001) Genes. Dev. 15, 3286-3295). To learn about the mechanism of histone methylation, we surveyed the genome of the yeast Saccharomyces cerevisiae for genes necessary for this process. By analyzing approximately 4800 mutant strains, each deleted for a different non-essential gene, we discovered that the ubiquitin-conjugating enzyme Rad6 is required for methylation of lysine 4 of histone H3. Ubiquitination of histone H2B on lysine 123 is the signal for the methylation of histone H3, which leads to silencing of genes located near telomeres.


Subject(s)
Histones/metabolism , Ligases/metabolism , Saccharomyces cerevisiae Proteins , Ubiquitin/metabolism , DNA, Ribosomal/metabolism , Electrophoresis, Polyacrylamide Gel , Gene Silencing , Lysine/metabolism , Methylation , Models, Biological , Mutation , Saccharomyces cerevisiae/genetics , Ubiquitin-Conjugating Enzymes
SELECTION OF CITATIONS
SEARCH DETAIL
...