Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Integr Comp Biol ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653716

ABSTRACT

Instances of convergent or parallel evolution provide a potent model system for exploring contingency and determinism in evolutionary biology. Likewise, the multiple, independent habitat transitions from saltwater to freshwater biomes offer opportunity for studying convergent evolution within and among different vertebrate lineages. For example, stingrays have invaded freshwater habitats multiple times across different continents, sometimes even several times within the same clade (e.g., Dasyatidae). We evaluated the frequency of saltwater-freshwater invasions in stingrays, compared ecological and phenotypic diversification among freshwater and saltwater lineages, and assessed the degree of convergence among freshwater species. Despite not being morphologically distinct from saltwater stingrays, freshwater stingrays do expand the margins of stingray morphological diversity. According to our data, trophic specialists occupied non-overlapping regions of morphospace, with piscivores and molluscivores being distinct from other diet guilds. Freshwater stingrays as a group did not strongly converge morphologically, neither did freshwater rays from different lineages which shared similar niches. These findings could be explained by there not being enough time for convergence to occur among more ancient and more recent freshwater lineages. Alternatively, the different ancestral bauplans of various freshwater ray lineages and weak selection on optimal phenotypes could promote contingency in the form of evolution along paths of least resistance.

2.
AJNR Am J Neuroradiol ; 44(2): 157-164, 2023 02.
Article in English | MEDLINE | ID: mdl-36702499

ABSTRACT

BACKGROUND AND PURPOSE: Given the increased use of stereotactic radiosurgical thalamotomy and other ablative therapies for tremor, new biomarkers are needed to improve outcomes. Using resting-state fMRI and MR tractography, we hypothesized that a "connectome fingerprint" can predict tremor outcomes and potentially serve as a targeting biomarker for stereotactic radiosurgical thalamotomy. MATERIALS AND METHODS: We evaluated 27 patients who underwent unilateral stereotactic radiosurgical thalamotomy for essential tremor or tremor-predominant Parkinson disease. Percentage postoperative improvement in the contralateral limb Fahn-Tolosa-Marin Clinical Tremor Rating Scale (TRS) was the primary end point. Connectome-style resting-state fMRI and MR tractography were performed before stereotactic radiosurgery. Using the final lesion volume as a seed, "connectivity fingerprints" representing ideal connectivity maps were generated as whole-brain R-maps using a voxelwise nonparametric Spearman correlation. A leave-one-out cross-validation was performed using the generated R-maps. RESULTS: The mean improvement in the contralateral tremor score was 55.1% (SD, 38.9%) at a mean follow-up of 10.0 (SD, 5.0) months. Structural connectivity correlated with contralateral TRS improvement (r = 0.52; P = .006) and explained 27.0% of the variance in outcome. Functional connectivity correlated with contralateral TRS improvement (r = 0.50; P = .008) and explained 25.0% of the variance in outcome. Nodes most correlated with tremor improvement corresponded to areas of known network dysfunction in tremor, including the cerebello-thalamo-cortical pathway and the primary and extrastriate visual cortices. CONCLUSIONS: Stereotactic radiosurgical targets with a distinct connectivity profile predict improvement in tremor after treatment. Such connectomic fingerprints show promise for developing patient-specific biomarkers to guide therapy with stereotactic radiosurgical thalamotomy.


Subject(s)
Connectome , Essential Tremor , Radiosurgery , Humans , Tremor/diagnostic imaging , Tremor/surgery , Treatment Outcome , Thalamus/diagnostic imaging , Thalamus/surgery , Magnetic Resonance Imaging , Essential Tremor/surgery
3.
Integr Comp Biol ; 62(2): 424-440, 2022 08 25.
Article in English | MEDLINE | ID: mdl-35482600

ABSTRACT

Habitat transitions are key potential explanations for why some lineages have diversified and others have not-from Anolis lizards to Darwin's finches. The ecological ramifications of marine-to-freshwater transitions for fishes suggest evolutionary contingency: some lineages maintain their ancestral niches in novel habitats (niche conservatism), whereas others alter their ecological role. However, few studies have considered phenotypic, ecological, and lineage diversification concurrently to explore this issue. Here, we investigated the macroevolutionary history of the taxonomically and ecologically diverse Neotropical freshwater river rays (subfamily Potamotrygoninae), which invaded and diversified in the Amazon and other South American rivers during the late Oligocene to early Miocene. We generated a time-calibrated, multi-gene phylogeny for Potamotrygoninae and reconstructed evolutionary patterns of diet specialization. We measured functional morphological traits relevant for feeding and used comparative phylogenetic methods to examine how feeding morphology diversified over time. Potamotrygonine trophic and phenotypic diversity are evenly partitioned (non-overlapping) among internal clades for most of their history, until 20-16 mya, when more recent diversification suggests increasing overlap among phenotypes. Specialized piscivores (Heliotrygon and Paratrygon) evolved early in the history of freshwater stingrays, while later trophic specialization (molluscivory, insectivory, and crustacivory) evolved in the genus Potamotrygon. Potamotrygonins demonstrate ecological niche lability in diets and feeding apparatus; however, diversification has mostly been a gradual process through time. We suggest that competition is unlikely to have limited the potamotrygonine invasion and diversification in South America.


Subject(s)
Lizards , Skates, Fish , Animals , Fresh Water , Lizards/genetics , Phenotype , Phylogeny
4.
J Mech Behav Biomed Mater ; 73: 86-101, 2017 09.
Article in English | MEDLINE | ID: mdl-28302412

ABSTRACT

Tilings are constructs of repeated shapes covering a surface, common in both manmade and natural structures, but in particular are a defining characteristic of shark and ray skeletons. In these fishes, cartilaginous skeletal elements are wrapped in a surface tessellation, comprised of polygonal mineralized tiles linked by flexible joints, an arrangement believed to provide both stiffness and flexibility. The aim of this research is to use two-dimensional analytical models to evaluate the mechanical performance of stingray skeleton-inspired tessellations, as a function of their material and structural parameters. To calculate the effective modulus of modeled composites, we subdivided tiles and their surrounding joint material into simple shapes, for which mechanical properties (i.e. effective modulus) could be estimated using a modification of traditional Rule of Mixtures equations, that either assume uniform strain (Voigt) or uniform stress (Reuss) across a loaded composite material. The properties of joints (thickness, Young's modulus) and tiles (shape, area and Young's modulus) were then altered, and the effects of these tessellation parameters on the effective modulus of whole tessellations were observed. We show that for all examined tile shapes (triangle, square and hexagon) composite stiffness increased as the width of the joints was decreased and/or the stiffness of the tiles was increased; this supports hypotheses that the narrow joints and high tile to joint stiffness ratio in shark and ray cartilage optimize composite tissue stiffness. Our models also indicate that, for simple, uniaxial loading, square tessellations are least sensitive and hexagon tessellations most sensitive to changes in model parameters, indicating that hexagon tessellations are the most "tunable" to specific mechanical properties. Our models provide useful estimates for the tensile and compressive properties of 2d tiled composites under uniaxial loading. These results lay groundwork for future studies into more complex (e.g. biological) loading scenarios and three dimensional structural parameters of biological tilings, while also providing insight into the mechanical roles of tessellations in general and improving the design of bioinspired materials.


Subject(s)
Biomimetic Materials , Cartilage/physiology , Models, Biological , Sharks , Animals , Biomechanical Phenomena , Elastic Modulus , Stress, Mechanical
SELECTION OF CITATIONS
SEARCH DETAIL
...