Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Protein Eng ; 4(8): 935-40, 1991 Dec.
Article in English | MEDLINE | ID: mdl-1817256

ABSTRACT

The function of arginine 65, a conserved residue located at the periphery of the active site cleft in yeast 3-phosphoglycerate kinase (PGK), has been investigated by site-directed mutagenesis. Mutant enzymes with glutamine, serine and alanine at position 65 all have very similar kinetic properties. The maximum velocities, determined in the absence of sulfate anion, are approximately 100% higher than the Vmax of wild-type PGK. The Km values are increased 2- to 3-fold for ATP and 5- to 6-fold for 3-phosphoglycerate (3PG). These results demonstrate that arginine 65 is not essential for catalysis. In contrast to wild-type enzyme, the mutants are not activated by sulfate ions. In addition, steady-state kinetic experiments indicate that the mutants are no longer activated by high concentrations of either 3PG or ATP. The dissociation constants for anions were determined by spectral titrations of the R65Q mutant labeled with a chromophoric probe. The Kd for 3PG is increased 6-fold, as compared to wild-type PGK, whereas the Kd for ATP is essentially unchanged. The Kd for sulfate is decreased less than 2-fold. The suppression of substrate- and sulfate-dependent activation suggests that arginine 65 participates in the regulatory mechanism responsible for activation of the enzyme.


Subject(s)
Phosphoglycerate Kinase/chemistry , Saccharomyces cerevisiae/enzymology , Anions/pharmacology , Arginine/chemistry , Arginine/genetics , Base Sequence , Binding Sites , Diphosphoglyceric Acids/pharmacology , Enzyme Activation , Kinetics , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , Phenylglyoxal/pharmacology , Phosphoglycerate Kinase/drug effects , Phosphoglycerate Kinase/genetics , Saccharomyces cerevisiae/genetics , Substrate Specificity
2.
J Biol Chem ; 265(18): 10659-65, 1990 Jun 25.
Article in English | MEDLINE | ID: mdl-2191956

ABSTRACT

A cluster of conserved histidines and arginines (His-62, His-167, Arg-21, Arg-38, and Arg-168) in 3-phosphoglycerate kinase (PGK) has been implicated as possibly involved in the binding of 3-phosphoglycerate (3-PG) and/or stabilization of the negatively charged transition state. The role of these residues in the catalytic function of yeast PGK and in the substrate- and sulfate-dependent activation was investigated by site-directed mutagenesis. The following substitutions, R21A, R21Q, H62Q, H167S, and R168Q, produced functional enzymes. In contrast, the R38A and R38Q mutations resulted in a complete loss of catalytic activity. These results demonstrate that of the basic residues studied, only arginine 38 is essential for the catalytic function of PGK. A moderate decrease in the catalytic efficiency as the result of the R21A, H167S, and R168Q mutations and an increased catalytic efficiency of the H62Q mutant rule out a possible role of a positive charge at these positions in the mechanism of phosphoryl transfer reaction. In contrast to the wild type PGK and the H62Q mutant, both of which are activated at low and inhibited at high sulfate concentration, the H167S, R168Q, and R21A mutants exhibited a progressive inhibition with increased concentration of sulfate. The activation observed at high concentration of either ATP or 3-PG as a variable substrate in the steady-state kinetics of wild type PGK was abolished as the result of the latter three mutations. The results of this work support the hypothesis that PGK has two binding sites for anionic ligands, the catalytic and regulatory sites for each substrate and the activatory and inhibitory sites for sulfate, and suggest that arginine 21, arginine 168, and histidine 167 are located in the activatory anion binding site, common for sulfate, 3-PG, and ATP. The increased Km values for both substrates and decreased specific activities of the mutants suggest that this regulatory site is close to the catalytic site.


Subject(s)
Arginine , Histidine , Mutation , Phosphoglycerate Kinase/metabolism , Saccharomyces cerevisiae/enzymology , Amino Acid Sequence , Base Sequence , Binding Sites , Enzyme Activation , Kinetics , Molecular Sequence Data , Molecular Weight , Phosphoglycerate Kinase/genetics , Protein Conformation , Saccharomyces cerevisiae/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...