Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
JASA Express Lett ; 3(2): 020801, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36858989

ABSTRACT

Submarine-melting of ice at the glacier-ocean interface accounts for a large portion of the ice-loss at tidewater glaciers and produces sound via bubble-release. The sound production is dominant in the sub-surface region near the glacier-ocean interface. This depth-dependence of the sound is studied by melting ice blocks in a glacial bay at various depths up to 20 m and recording their acoustics over a large frequency range. The acoustic energy decreases with depth in line with expectations from the physics of the phenomenon and is fit to an exponentially decaying curve. The estimated variation will be useful for interpreting the sound in marine-terminating glaciers bays in terms of the submarine-melting activity.

2.
J Acoust Soc Am ; 153(1): 665, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36732226

ABSTRACT

Passive localization and tracking of a mobile emitter, and joint learning of its reverberant three-dimensional (3D) acoustic environment, where critical structural features are unknown, is a key open problem. Unaccounted-for occluders are potentially present, so that the emitter can lose line-of-sight to the receivers, and can only be observed through its reflected raypaths. The locations of reflective boundaries must therefore be jointly estimated with the emitter's position. A multistage global optimization and tracking architecture is developed to solve this problem with a relatively unconstrained model. Each stage of this architecture establishes domain knowledge such as synchronization and initial environment estimation, which are inputs for the following stages of more refined algorithms. This approach is generalizable to different physical scales and modalities and improves on methods that do not exploit the motion of the emitter. In one stage of this architecture, particle swarm optimization is used to simultaneously estimate the environment and the emitter location. In another stage, a Hough transform-inspired boundary localization algorithm is extended to 3D settings, to establish an initial estimate of the environment. The performance of this holistic approach is analyzed and its reliability is demonstrated in a reverberant watertank testbed, which models the shallow-water underwater acoustic setting.

3.
J Acoust Soc Am ; 151(4): 2367, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35461496

ABSTRACT

Glacier ice loss impacts sound propagation within Arctic fjords. Regular calving events contribute to a collection of floating ice fragments, known as brash ice, at the ocean surface that obstruct the natural and anthropogenic acoustic signals, yet are difficult to characterize. Transmission loss measurements using a maximum length sequence (m-sequence) signal were conducted in September 2017 near Hansbreen glacier in Hornsund Fjord, Svalbard with dense brash ice present at the water surface. An acoustic model of the brash ice surface was inferred through consideration of the experimental geometry, arrival amplitude, and travel time difference between the direct and surface reflected arrivals from the source to two receivers. The inferred surface was then incorporated into a forward simulation of the environment using sound speed profiles measured during the experiment. BELLHOP ([Porter and Bucker (1987). J. Acoust. Soc. Am. 82(4), 1349-1359],), a ray tracing code available in the Acoustics Toolbox (HLS Inc., San Diego, CA), was used to track the time difference of arrivals and amplitudes of the modeled direct and surface reflected rays. Comparisons between the measured and simulated results provide insight into the geometric shape and reflection characteristics of the brash ice surface within this and similar environments.

4.
JASA Express Lett ; 1(10): 100801, 2021 Oct.
Article in English | MEDLINE | ID: mdl-36154216

ABSTRACT

A simulation framework for bubbly flow and the sound radiated by breaking waves is presented. It consists of a two-phase flow solver, an algorithm to track bubbles and bubble creation rates, and a module to compute the sound generated by newly-formed bubbles. The sounds from breaking, third-order Stokes waves of 0.25 m wavelength and two slopes are calculated. The results show encouraging agreement with existing laboratory observations and identify the importance of air cylinder breakup in bubble creation. Remaining problems include modeling boundary effects that inhibit bubble coalescence in seawater and the generation of sound by the breakup of air cylinders.

5.
J Acoust Soc Am ; 148(6): 3849, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33379924

ABSTRACT

Arctic glacial bays are among the loudest natural environments in the ocean, owing to heavy submarine melting, calving, freshwater discharge, and ice-wave interactions. Understanding the coherence and vertical directionality of the ambient sound there can provide insights about the mechanisms behind the ice loss in these regions. It can also provide key information for operating technologies such as sonar, communication, and navigation systems. To study the unexplored sound coherence and vertical directionality in glacial bays, a vertical hydrophone array was deployed, and acoustic measurements were made at four glacier termini in Hornsund Fjord, Spitsbergen, in June and July 2019. The measurements show that the sound generated by melting glacier ice is more dominant in the upper portion of the water column near the glacier terminus. The melt water from the submarine melting and the freshwater discharge from the glacier create a glacially modified water duct near the sea surface. This disrupts the inter-sensor vertical coherence in the channel. However, some coherence across the duct is preserved for sound arising from spatially localized events at low frequencies. Overall, the observations in this study can help improve the understanding of the submarine melting phenomenon in glacial bays.

6.
Proc Natl Acad Sci U S A ; 114(27): 6978-6983, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28630346

ABSTRACT

The oceans represent a significant global source of atmospheric aerosols. Sea spray aerosol (SSA) particles comprise sea salts and organic species in varying proportions. In addition to size, the overall composition of SSA particles determines how effectively they can form cloud droplets and ice crystals. Thus, understanding the factors controlling SSA composition is critical to predicting aerosol impacts on clouds and climate. It is often assumed that submicrometer SSAs are mainly formed by film drops produced from bursting bubble-cap films, which become enriched with hydrophobic organic species contained within the sea surface microlayer. In contrast, jet drops formed from the base of bursting bubbles are postulated to mainly produce larger supermicrometer particles from bulk seawater, which comprises largely salts and water-soluble organic species. However, here we demonstrate that jet drops produce up to 43% of total submicrometer SSA number concentrations, and that the fraction of SSA produced by jet drops can be modulated by marine biological activity. We show that the chemical composition, organic volume fraction, and ice nucleating ability of submicrometer particles from jet drops differ from those formed from film drops. Thus, the chemical composition of a substantial fraction of submicrometer particles will not be controlled by the composition of the sea surface microlayer, a major assumption in previous studies. This finding has significant ramifications for understanding the factors controlling the mixing state of submicrometer SSA particles and must be taken into consideration when predicting SSA impacts on clouds and climate.

7.
J Acoust Soc Am ; 140(2): 787, 2016 08.
Article in English | MEDLINE | ID: mdl-27586711

ABSTRACT

Forward scattered sound from the ocean surface is inverted for wave shape during three periods: low wind, mix of wind and swell, and stormy. Derived wave profiles are spatially limited to a Fresnel region at or near the nominal surface specular reflection point. In some cases, the surface wave profiles exhibit unrealistic temporal and spatial properties. To remedy this, the spatial gradient of inverted waves is constrained to a maximum slope of 0.88. Under this global constraint, only surface waves during low wind conditions result in a modeled surface multipath that accurately matches data. The power spectral density of the inverted surface wave field saturates around a frequency of 8 Hz while upward looking SONAR saturates at 1 Hz. Each shows a high frequency spectral slope of -4 that is in agreement with various empirical ocean wave spectra. The improved high frequency resolution provided by the scattering inversion indicates that it is possible to remotely gain information about high frequency components of ocean waves. The inability of the inversion algorithm to determine physically realistic surface waves in periods of high wind indicates that bubbles and out of plane scattering become important in those operating scenarios.

8.
J Acoust Soc Am ; 139(5): 2784, 2016 05.
Article in English | MEDLINE | ID: mdl-27250171

ABSTRACT

The interaction of vhf 100-1000 kHz underwater sound with the ocean surface is explored. The bistatic forward scatter of 300 kHz sound is measured in a wind driven wave channel. Fluctuations in arrival amplitude are described by the scintillation index (SI) which is a measure of arrival intensity variance. SI initially increases with wind speed but eventually saturates to a value of 0.5 when the root-mean-square (rms) roughness is 0.5 mm. An adjusted scintillation index (SI*) is suggested that accounts for the multiple arrivals and properly saturates to a value of 1. Fluctuations in arrival time do not saturate and increase proportionately to the dominant surface wave component. Forward scattering is modeled at frequencies ranging from 50 to 2000 kHz using the Helmholtz-Kirchhoff integral with surface wave realizations derived from wave gauge data. The amplitude and temporal statistics of the simulated scattering agree well with measured data. Intensity saturation occurs at lower wind speeds for higher frequency sound. Both measured and modeled vhf sound is characterized by many surface arrivals at saturation. Doppler shifts associated with wave motion are expected to vary rapidly for vhf sound however further analysis is required.

9.
ACS Cent Sci ; 2(1): 40-47, 2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26878061

ABSTRACT

The composition and surface properties of atmospheric aerosol particles largely control their impact on climate by affecting their ability to uptake water, react heterogeneously, and nucleate ice in clouds. However, in the vacuum of a conventional electron microscope, the native surface and internal structure often undergo physicochemical rearrangement resulting in surfaces that are quite different from their atmospheric configurations. Herein, we report the development of cryogenic transmission electron microscopy where laboratory generated sea spray aerosol particles are flash frozen in their native state with iterative and controlled thermal and/or pressure exposures and then probed by electron microscopy. This unique approach allows for the detection of not only mixed salts, but also soft materials including whole hydrated bacteria, diatoms, virus particles, marine vesicles, as well as gel networks within hydrated salt droplets-all of which will have distinct biological, chemical, and physical processes. We anticipate this method will open up a new avenue of analysis for aerosol particles, not only for ocean-derived aerosols, but for those produced from other sources where there is interest in the transfer of organic or biological species from the biosphere to the atmosphere.

10.
Proc Natl Acad Sci U S A ; 113(21): 5797-803, 2016 May 24.
Article in English | MEDLINE | ID: mdl-26699469

ABSTRACT

Ice nucleating particles (INPs) are vital for ice initiation in, and precipitation from, mixed-phase clouds. A source of INPs from oceans within sea spray aerosol (SSA) emissions has been suggested in previous studies but remained unconfirmed. Here, we show that INPs are emitted using real wave breaking in a laboratory flume to produce SSA. The number concentrations of INPs from laboratory-generated SSA, when normalized to typical total aerosol number concentrations in the marine boundary layer, agree well with measurements from diverse regions over the oceans. Data in the present study are also in accord with previously published INP measurements made over remote ocean regions. INP number concentrations active within liquid water droplets increase exponentially in number with a decrease in temperature below 0 °C, averaging an order of magnitude increase per 5 °C interval. The plausibility of a strong increase in SSA INP emissions in association with phytoplankton blooms is also shown in laboratory simulations. Nevertheless, INP number concentrations, or active site densities approximated using "dry" geometric SSA surface areas, are a few orders of magnitude lower than corresponding concentrations or site densities in the surface boundary layer over continental regions. These findings have important implications for cloud radiative forcing and precipitation within low-level and midlevel marine clouds unaffected by continental INP sources, such as may occur over the Southern Ocean.

11.
Luminescence ; 31(1): 270-80, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26061152

ABSTRACT

Dinoflagellate bioluminescence, a common source of bioluminescence in coastal waters, is stimulated by flow agitation. Although bubbles are anecdotally known to be stimulatory, the process has never been experimentally investigated. This study quantified the flash response of the bioluminescent dinoflagellate Lingulodinium polyedrum to stimulation by bubbles rising through still seawater. Cells were stimulated by isolated bubbles of 0.3-3 mm radii rising at their terminal velocity, and also by bubble clouds containing bubbles of 0.06-10 mm radii for different air flow rates. Stimulation efficiency, the proportion of cells producing a flash within the volume of water swept out by a rising bubble, decreased with decreasing bubble radius for radii less than approximately 1 mm. Bubbles smaller than a critical radius in the range 0.275-0.325 mm did not stimulate a flash response. The fraction of cells stimulated by bubble clouds was proportional to the volume of air in the bubble cloud, with lower stimulation levels observed for clouds with smaller bubbles. An empirical model for bubble cloud stimulation based on the isolated bubble observations successfully reproduced the observed stimulation by bubble clouds for low air flow rates. High air flow rates stimulated more light emission than expected, presumably because of additional fluid shear stress associated with collective buoyancy effects generated by the high air fraction bubble cloud. These results are relevant to bioluminescence stimulation by bubbles in two-phase flows, such as in ship wakes, breaking waves, and sparged bioreactors.


Subject(s)
Dinoflagellida/chemistry , Luminescence , Luminescent Measurements , Particle Size , Surface Properties
12.
J Phys Chem A ; 119(33): 8860-70, 2015 Aug 20.
Article in English | MEDLINE | ID: mdl-26196268

ABSTRACT

Sea spray aerosol (SSA) particles represent one of the most abundant surfaces available for heterogeneous reactions to occur upon and thus profoundly alter the composition of the troposphere. In an effort to better understand tropospheric heterogeneous reaction processes, fundamental laboratory studies must be able to accurately reproduce the chemical complexity of SSA. Here we describe a new approach that uses microbial processes to control the composition of seawater and SSA particle composition. By inducing a phytoplankton bloom, we are able to create dynamic ecosystem interactions between marine microorganisms, which serve to alter the organic mixtures present in seawater. Using this controlled approach, changes in seawater composition become reflected in the chemical composition of SSA particles 4 to 10 d after the peak in chlorophyll-a. This approach for producing and varying the chemical complexity of a dominant tropospheric aerosol provides the foundation for further investigations of the physical and chemical properties of realistic SSA particles under controlled conditions.


Subject(s)
Aerosols/chemistry , Chlorophyll/chemistry , Models, Chemical , Seawater/chemistry , Chlorophyll A , Laboratories
13.
J Acoust Soc Am ; 136(5): EL350-6, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25373992

ABSTRACT

The directionality of ambient noise in an Arctic tidewater glacier bay was measured using two horizontally spaced, broadband hydrophones. Segments of noise were divided into two frequency bands and analyzed for arrival angle. These data show that different classes of source radiate noise in distinct spectral bands and are spatially diverse. A previously unidentified source, the interaction of surface gravity waves with underside of ice ledges at the periphery of icebergs, is described. The generation of noise by ice-wave interaction suggests that surface waves should be measured if ambient noise is to be used to monitor ice dynamics in glacial fjords.

14.
J Acoust Soc Am ; 136(2): 604-13, 2014 Aug.
Article in English | MEDLINE | ID: mdl-25096095

ABSTRACT

Surface wave shapes are determined by analyzing underwater reflected acoustic signals collected at multiple receivers. The transmitted signals are of nominal frequency 300 kHz and are reflected off surface gravity waves that are paddle-generated in a wave tank. An inverse processing algorithm reconstructs 50 surface wave shapes over a length span of 2.10 m. The inverse scheme uses a broadband forward scattering model based on Kirchhoff's diffraction formula to determine wave shapes. The surface reconstruction algorithm is self-starting in that source and receiver geometry and initial estimates of wave shape are determined from the same acoustic signals used in the inverse processing. A high speed camera provides ground-truth measurements of the surface wave field for comparison with the acoustically derived surface waves. Within Fresnel zone regions the statistical confidence of the inversely optimized surface profile exceeds that of the camera profile. Reconstructed surfaces are accurate to a resolution of about a quarter-wavelength of the acoustic pulse only within Fresnel zones associated with each source and receiver pair. Multiple isolated Fresnel zones from multiple receivers extend the spatial extent of accurate surface reconstruction while overlapping Fresnel zones increase confidence in the optimized profiles there.

15.
J Acoust Soc Am ; 133(5): 2597-611, 2013 May.
Article in English | MEDLINE | ID: mdl-23654368

ABSTRACT

Surface wave shapes are determined by analyzing underwater reflected acoustic signals. The acoustic signals (of nominal frequency 200 kHz) are forward scattered from the underside of surface waves that are generated in a wave tank and scaled to model smooth ocean swell. An inverse processing algorithm is designed and implemented to reconstruct the surface displacement profiles of the waves over one complete period. The inverse processing uses the surface scattered pulses collected at the receiver, an initial wave profile (two are considered), and a broadband forward scattering model based on Kirchhoff's diffraction formula to iteratively adjust the surface until it is considered optimized or reconstructed. Two physical length scales over which information can be known about the surface are confirmed. An outer length scale, the Fresnel zone surrounding each specular reflection point, is the only region where optimized surfaces resulting from each initial profile converge within a resolution set by the inner length scale, a quarter-wavelength of the acoustic pulse. The statistical confidence of each optimized surface is also highest within a Fresnel zone. Future design considerations are suggested such as an array of receivers that increases the region of surface reconstruction by a factor of 2 to 3.


Subject(s)
Acoustics , Signal Processing, Computer-Assisted , Sound , Water , Acoustics/instrumentation , Algorithms , Models, Statistical , Motion , Oceans and Seas , Pressure , Scattering, Radiation , Sound Spectrography , Time Factors , Transducers, Pressure
16.
Proc Natl Acad Sci U S A ; 110(19): 7550-5, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23620519

ABSTRACT

The production, size, and chemical composition of sea spray aerosol (SSA) particles strongly depend on seawater chemistry, which is controlled by physical, chemical, and biological processes. Despite decades of studies in marine environments, a direct relationship has yet to be established between ocean biology and the physicochemical properties of SSA. The ability to establish such relationships is hindered by the fact that SSA measurements are typically dominated by overwhelming background aerosol concentrations even in remote marine environments. Herein, we describe a newly developed approach for reproducing the chemical complexity of SSA in a laboratory setting, comprising a unique ocean-atmosphere facility equipped with actual breaking waves. A mesocosm experiment was performed in natural seawater, using controlled phytoplankton and heterotrophic bacteria concentrations, which showed SSA size and chemical mixing state are acutely sensitive to the aerosol production mechanism, as well as to the type of biological species present. The largest reduction in the hygroscopicity of SSA occurred as heterotrophic bacteria concentrations increased, whereas phytoplankton and chlorophyll-a concentrations decreased, directly corresponding to a change in mixing state in the smallest (60-180 nm) size range. Using this newly developed approach to generate realistic SSA, systematic studies can now be performed to advance our fundamental understanding of the impact of ocean biology on SSA chemical mixing state, heterogeneous reactivity, and the resulting climate-relevant properties.


Subject(s)
Aerosols/chemistry , Atmosphere/chemistry , Bacteria/metabolism , Phytoplankton/metabolism , Seawater/chemistry , Chlorophyll/chemistry , Chlorophyll A , Ecology , Oceanography , Oceans and Seas
17.
J Acoust Soc Am ; 133(2): EL69-75, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23363196

ABSTRACT

A study of the sound generated by 2.5 mm radius bubbles bursting on the surface of fresh water is presented. The sound pulses are found to be sensitive to the time interval between the bubble reaching the water surface and bursting. Bubbles that burst within a few 10's of milliseconds behave like a Helmholtz resonator and radiate a swept chirp pulse. Bubbles that persist for 100's of milliseconds or more exhibit more complex acoustic behavior. An analysis of the resonator behavior provides an estimate of the film thickness in reasonable agreement with a fluid drainage model.


Subject(s)
Acoustics , Air , Models, Theoretical , Sound , Water , Acoustics/instrumentation , Air Pressure , Motion , Signal Processing, Computer-Assisted , Sound Spectrography , Surface Properties , Time Factors , Transducers, Pressure , Vibration
18.
J Acoust Soc Am ; 132(6): 3673-86, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23231099

ABSTRACT

Deterministic structures in sound reflected by gravity waves, such as focused arrivals and Doppler shifts, have implications for underwater acoustics and sonar, and the performance of underwater acoustic communications systems. A stationary phase analysis of the Helmholtz-Kirchhoff scattering integral yields the trajectory of focused arrivals and their relationship to the curvature of the surface wave field. Deterministic effects along paths up to 70 water depths long are observed in shallow water measurements of surface-scattered sound at the Martha's Vineyard Coastal Observatory. The arrival time and amplitude of surface-scattered pulses are reconciled with model calculations using measurements of surface waves made with an upward-looking sonar mounted mid-way along the propagation path. The root mean square difference between the modeled and observed pulse arrival amplitude and delay, respectively, normalized by the maximum range of amplitudes and delays, is found to be 0.2 or less for the observation periods analyzed. Cross-correlation coefficients for modeled and observed pulse arrival delays varied from 0.83 to 0.16 depending on surface conditions. Cross-correlation coefficients for normalized pulse energy for the same conditions were small and varied from 0.16 to 0.06. In contrast, the modeled and observed pulse arrival delay and amplitude statistics were in good agreement.


Subject(s)
Acoustics , Sound , Water , Acoustics/instrumentation , Gravitation , Models, Theoretical , Motion , Oceans and Seas , Scattering, Radiation , Signal Processing, Computer-Assisted , Sound Spectrography , Surface Properties , Time Factors , Transducers , Water Movements , Wind
19.
J Acoust Soc Am ; 132(2): 700-8, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22894192

ABSTRACT

The role of surface active materials in the sea surface microlayer on the production of underwater noise by breaking waves is considered. Wave noise is assumed to be generated by bubbles formed within actively breaking whitecaps, driven into breathing mode oscillation at the moment of their formation by non-equilibrium, surface tension forces. Two significant effects associated with surface tension are identified-a reduction in low frequency noise (<1000 Hz) due to the re-fragmentation of actively radiating bubbles by fluid turbulence within the whitecap and a reduction in overall noise level due to a decrease in the excitation amplitude of bubbles associated with reduced surface tension. The impact of the latter effect on the accuracy of Weather Observations Through Ambient Noise estimates of wind speed is assessed and generally found to be less than ±1 m s(-1) for wind speeds less than 10 m s(-1) and typical values of surfactant film pressure within sea slicks.


Subject(s)
Noise/prevention & control , Water Movements , Water , Models, Theoretical , Motion , Oceans and Seas , Sound Spectrography , Surface Tension , Surface-Active Agents , Time Factors , Wind
20.
J Acoust Soc Am ; 129(1): 74-84, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21302989

ABSTRACT

Understanding the formation and evolution of bubble populations is important in a wide range of situations, including industrial processes, medical applications, and ocean science. Passive acoustical techniques can be used to track changes in the population, since each bubble formation or fragmentation event is likely to produce sound. This sound potentially contains a wealth of information about the fragmentation process and the products, but to fully exploit these data it is necessary to understand the physical processes that determine its characteristics. The focus of this paper is binary fragmentation, when turbulence causes one bubble to split into two. Specifically, the effect that bubble-bubble coupling has on the sound produced is examined. A numerical simulation of the acoustical excitation of fragmenting bubbles is used to generate model acoustic signals, which are compared with experimental data. A frequency range with a suppressed acoustic output which is observed in the experimental data can be explained when coupling is taken into account. In addition, although the driving mechanism of neck collapse is always consistent with the data for the larger bubble of the newly formed pair, a different mechanism must be driving the smaller bubble in some situations.


Subject(s)
Acoustics , Models, Theoretical , Sound , Computer Simulation , Motion , Nonlinear Dynamics , Numerical Analysis, Computer-Assisted , Pressure , Signal Processing, Computer-Assisted , Sound Spectrography , Surface Properties , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...