Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Metabolism ; 60(7): 1021-37, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21129759

ABSTRACT

In response to palmitate, the antidiabetic sulfonylurea drug glimepiride, phosphoinositoglycans, or H(2)O(2), the release of the glycosylphosphatidylinositol-anchored and cyclic adenosine monophosphate-degrading phosphodiesterase Gce1 from adipocytes into small vesicles (adiposomes) and its translocation from adiposomes to cytoplasmic lipid droplets (LD) of adipocytes have been reported. Here the role of Gce1-harboring adiposomes in coordinating lipolysis between differently sized adipocytes was studied. Separate or mixed populations of isolated epididymal rat adipocytes of small and large size and native adipose tissue pieces from young and old rats were incubated with exogenous adiposomes or depleted of endogenous adiposomes and then analyzed for translocation of Gce1 and lipolysis in response to above antilipolytic stimuli. Large compared with small adipocytes are more efficient in releasing Gce1 into adiposomes but less efficient in translocating Gce1 from adiposomes to LDs. Maximal lipolysis inhibition by above antilipolytic stimuli, but not by insulin, was observed with mixed populations of small and large adipocytes (1:1 to 1:2) rather than with separate populations. In mixed adipocyte populations and adipose tissue pieces from young, but not old, rats, lipolysis inhibition by above antilipolytic stimuli, but not by insulin, was dependent on the function of Gce1-harboring adiposomes. Inhibition of lipolysis in rat adipose tissue in response to palmitate, glimepiride, and H(2)O(2) is coordinated via the release of adiposome-associated and glycosylphosphatidylinositol-anchored Gce1 from large "donor" adipocytes and their subsequent translocation to the LDs of small "acceptor" adipocytes. This transfer of antilipolytic information may be of pathophysiologic relevance.


Subject(s)
Adipocytes/metabolism , GPI-Linked Proteins/metabolism , Lipolysis/physiology , 3',5'-Cyclic-AMP Phosphodiesterases/metabolism , Adipocytes/drug effects , Animals , Hydrogen Peroxide/pharmacology , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Lipid Metabolism/drug effects , Lipolysis/drug effects , Male , Palmitates/pharmacology , Protein Transport/drug effects , Rats , Rats, Sprague-Dawley , Sulfonylurea Compounds/pharmacology
2.
Results Probl Cell Differ ; 52: 27-34, 2010.
Article in English | MEDLINE | ID: mdl-20865369

ABSTRACT

Adipose tissue mass in mammals expands by increasing the average cell volume and/or total number of the adipocytes. Upregulated lipid storage in fully differentiated adipocytes resulting in their enlargement is well documented and thought to be a critical mechanism for the expansion of adipose tissue depots during the growth of both lean and obese animals and human beings. A novel molecular mechanism for the regulation of lipid storage and cell size in rat adipocytes was recently elucidated for the physiological stimuli, palmitate and H(2)O(2), and the antidiabetic sulfonylurea drug, glimepiride. It encompasses (1) the release of small vesicles, so-called adiposomes, harboring the glycosylphosphatidylinositol -anchored (c)AMP-degrading phosphodiesterase Gce1 and 5'-nucleotidase CD73 from donor adipocytes, (2) the transfer of the adiposomes and their interaction with detergent-insoluble glycolipid-enriched microdomains of the plasma membrane of acceptor adipocytes, (3) the translocation of Gce1 and CD73 from the adiposomes to the intracellular lipid droplets of the acceptor adipocytes, and (4) the degradation of (c)AMP at the lipid droplet surface zone by Gce1 and CD73 in the acceptor adipocytes, leading to the upregulation of the esterification of fatty acids into triacylglycerol s and the downregulation of their release from triacylglycerols. This mechanism may provide novel strategies for the therapy of metabolic diseases, such as type 2 diabetes and obesity.


Subject(s)
Adipocytes/cytology , Adipocytes/metabolism , Glycosylphosphatidylinositols/physiology , Lipid Metabolism/physiology , R-SNARE Proteins/physiology , Animals , Cell Size , Glycosylphosphatidylinositols/genetics , Glycosylphosphatidylinositols/metabolism , Humans , Lipid Metabolism/genetics , Models, Biological , R-SNARE Proteins/genetics , R-SNARE Proteins/metabolism , Rats
3.
Arch Physiol Biochem ; 116(3): 97-115, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20515260

ABSTRACT

A novel molecular mechanism for the regulation of lipid metabolism by palmitate, H2O2 and the anti-diabetic sulfonylurea drug, glimepiride, in rat adipocytes was recently elucidated. It encompasses the translocation of the glycosylphosphatidylinositol-anchored (GPI-) and (c)AMP degrading enzymes Gce1 and CD73 from detergent-insoluble glycolipid-enriched microdomains of the plasma membrane (DIGs) to intracellular lipid droplets (LD), the incorporation of Gce1 and CD73 into vesicles (adiposomes) which are then released from donor adipocytes and finally the transfer of Gce1 and CD73 from the adiposomes to acceptor adipocytes, where they degrade (c)AMP at the LD surface. Here the stimulation of esterification and inhibition of lipolysis by synthetic phosphoinositolglycans (PIGs), such as PIG37, which represents the glycan component of the GPI anchor, are shown to be correlated to translocation from DIGs to LD and release into adiposomes of Gce1 and CD73. PIG37 actions were blocked upon disruption of DIGs, inactivation of PIG receptor and removal of adiposomes from the incubation medium as was true for those induced by palmitate, H2O2 or glimepiride. In contrast, only the latter actions were dependent on the GPI-specific phospholipase C (GPI-PLC), which may generate PIGs, or on exogenous PIG37 in case of inhibited GPI-PLC. At submaximal concentrations PIG37 and palmitate, H2O2 or glimepiride acted in synergistic fashion. These data suggest that PIGs provoke the transfer of GPI-proteins from DIGs via LD and adiposomes of donor adipocytes to acceptor adipocytes and thereby mediate the regulation of lipid metabolism by palmitate, H2O2 and glimepiride between adipocytes.


Subject(s)
Adipocytes/drug effects , Adipocytes/metabolism , Glycosylphosphatidylinositols/metabolism , Inositol Phosphates/chemical synthesis , Inositol Phosphates/pharmacology , Lipid Metabolism/drug effects , Polysaccharides/chemical synthesis , Polysaccharides/pharmacology , Proteins/metabolism , 5'-Nucleotidase/metabolism , Adipocytes/cytology , Adipocytes/enzymology , Animals , Cytoplasm/drug effects , Cytoplasm/metabolism , Male , Membrane Microdomains/drug effects , Membrane Microdomains/metabolism , Protein Transport/drug effects , Rats , Rats, Sprague-Dawley
4.
Arch Physiol Biochem ; 116(1): 3-20, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20166804

ABSTRACT

Sulphonylurea drugs have been widely used in the safe and efficacous therapy of type II diabetes during the past five decades. They lower blood glucose predominantly via the stimulation of insulin release from pancreatic beta-cells. However, a moderate insulin-independent regulation of fatty acid esterification and release in adipose tissue cells has been reported for certain sulphonylureas, in particular for glimepiride. On basis of the known pleiotropic pathogenesis of type II diabetes with a combination of beta-cell failure and peripheral, including adipocyte, insulin resistance, anti-diabetic drugs exerting both insulin releasing- and fatty acid-metabolizing activities in a more balanced and potent fashion may be of advantage. However, the completely different molecular mechanisms underlying the insulin-releasing and fatty acid-metabolizing activities, as have been delineated so far for glimepiride, may hamper their optimization within a single sulphonylurea molecule. By analyzing conventional sulphonylureas and novel glimepiride derivatives for their activities at the primary targets and downstream steps in both beta-cells and adipocytes in vitro we demonstrate here that the insulin-releasing and fatty acid-metabolizing activities are critically dependent on both overlapping and independent structural determinants. These were unravelled by the parallel losses of these two activities in a subset of glimepiride derivatives and the impairment in the insulin-releasing activity in parallel with elevation in the fatty acid-metabolizing activity in a different subset. Together these findings may provide a basis for the design of novel sulphonylureas with blood glucose-lowering activity relying on less pronounced stimulation of insulin release from pancreatic beta-cells and more pronounced insulin-independent stimulation of esterification as well as inhibition of release of fatty acids by adipocytes than provoked by the sulphonylureas currently used in therapy.


Subject(s)
Adipocytes/drug effects , Adipocytes/metabolism , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Sulfonylurea Compounds/administration & dosage , Animals , COS Cells , Chlorocebus aethiops , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Hypoglycemic Agents/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...