Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 117(32): 19544-19555, 2020 08 11.
Article in English | MEDLINE | ID: mdl-32747566

ABSTRACT

Corresponding attributes of neural development and function suggest arthropod and vertebrate brains may have an evolutionarily conserved organization. However, the underlying mechanisms have remained elusive. Here, we identify a gene regulatory and character identity network defining the deutocerebral-tritocerebral boundary (DTB) in Drosophila This network comprises genes homologous to those directing midbrain-hindbrain boundary (MHB) formation in vertebrates and their closest chordate relatives. Genetic tracing reveals that the embryonic DTB gives rise to adult midbrain circuits that in flies control auditory and vestibular information processing and motor coordination, as do MHB-derived circuits in vertebrates. DTB-specific gene expression and function are directed by cis-regulatory elements of developmental control genes that include homologs of mammalian Zinc finger of the cerebellum and Purkinje cell protein 4Drosophila DTB-specific cis-regulatory elements correspond to regulatory sequences of human ENGRAILED-2, PAX-2, and DACHSHUND-1 that direct MHB-specific expression in the embryonic mouse brain. We show that cis-regulatory elements and the gene networks they regulate direct the formation and function of midbrain circuits for balance and motor coordination in insects and mammals. Regulatory mechanisms mediating the genetic specification of cephalic neural circuits in arthropods correspond to those in chordates, thereby implying their origin before the divergence of deuterostomes and ecdysozoans.


Subject(s)
Evolution, Molecular , Gene Regulatory Networks , Mesencephalon/physiology , Animals , Behavior, Animal , Brain/embryology , Brain/metabolism , Brain/physiology , Drosophila , Fibroblast Growth Factor 8/genetics , Fibroblast Growth Factor 8/metabolism , Gene Expression Regulation, Developmental , Humans , Mesencephalon/embryology , Mesencephalon/metabolism , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neural Pathways , Paired Box Transcription Factors/genetics , Paired Box Transcription Factors/metabolism , Regulatory Sequences, Nucleic Acid , Rhombencephalon/embryology , Rhombencephalon/metabolism , Rhombencephalon/physiology , Signal Transduction
2.
Brain ; 141(10): 2908-2924, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30239641

ABSTRACT

Accumulation and aggregation of TDP-43 is a major pathological hallmark of amyotrophic lateral sclerosis and frontotemporal dementia. TDP-43 inclusions also characterize patients with GGGGCC (G4C2) hexanucleotide repeat expansion in C9orf72 that causes the most common genetic form of amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD). Functional studies in cell and animal models have identified pathogenic mechanisms including repeat-induced RNA toxicity and accumulation of G4C2-derived dipeptide-repeat proteins. The role of TDP-43 dysfunction in C9ALS/FTD, however, remains elusive. We found G4C2-derived dipeptide-repeat protein but not G4C2-RNA accumulation caused TDP-43 proteinopathy that triggered onset and progression of disease in Drosophila models of C9ALS/FTD. Timing and extent of TDP-43 dysfunction was dependent on levels and identity of dipeptide-repeat proteins produced, with poly-GR causing early and poly-GA/poly-GP causing late onset of disease. Accumulating cytosolic, but not insoluble aggregated TDP-43 caused karyopherin-α2/4 (KPNA2/4) pathology, increased levels of dipeptide-repeat proteins and enhanced G4C2-related toxicity. Comparable KPNA4 pathology was observed in both sporadic frontotemporal dementia and C9ALS/FTD patient brains characterized by its nuclear depletion and cytosolic accumulation, irrespective of TDP-43 or dipeptide-repeat protein aggregates. These findings identify a vicious feedback cycle for dipeptide-repeat protein-mediated TDP-43 and subsequent KPNA pathology, which becomes self-sufficient of the initiating trigger and causes C9-related neurodegeneration.


Subject(s)
Amyotrophic Lateral Sclerosis/pathology , C9orf72 Protein/metabolism , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/pathology , Nerve Degeneration/metabolism , alpha Karyopherins/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Animals , DNA Repeat Expansion , Drosophila , Drosophila Proteins/metabolism , Feedback, Physiological , Frontotemporal Dementia/metabolism , Humans , Nerve Degeneration/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...