Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Occup Med Toxicol ; 19(1): 10, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38576000

ABSTRACT

BACKGROUND: Chronic obstructive pulmonary disease (COPD) affecting 334 million people in the world remains a major cause of morbidity and mortality. Proper diagnosis of COPD is still a challenge and largely solely based on spirometric criteria. We aimed to investigate the potential of nitrosative/oxidative stress and related metabolic biomarkers in exhaled breath condensate (EBC) to discriminate COPD patients. METHODS: Three hundred three participants were randomly selected from a 15,000-transit worker cohort within the Respiratory disease Occupational Biomonitoring Collaborative Project (ROBoCoP). COPD was defined using the Global Initiative for Chronic Obstructive Lung Disease (GOLD) criteria as post-bronchodilator ratio of Forced Expiratory Volume in 1st second to Forced Vital Capacity < 0.7 in spirometry validated by an experienced pulmonologist. Discriminative power of biomarker profiles in EBC was analyzed using linear discriminant analyses. RESULTS: Amongst 300 participants with validated spirometry, 50.3% were female, 52.3 years old in average, 36.0% were current smokers, 12.7% ex-smokers with mean tobacco exposure of 15.4 pack-years. Twenty-one participants (7.0%) were diagnosed as COPD, including 19 new diagnoses, 12 of which with a mild COPD stage (GOLD 1). Amongst 8 biomarkers measured in EBC, combination of 2 biomarkers, Lactate and Malondialdehyde (MDA) significantly discriminated COPD subjects from non-COPD, with a 71%-accuracy, area under the receiver curve of 0.78 (p-value < 0.001), and a negative predictive value of 96%. CONCLUSIONS: These findings support the potential of biomarkers in EBC, in particular lactate and MDA, to discriminate COPD patients even at a mild or moderate stage. These EBC biomarkers present a non-invasive and drugless technique, which can improve COPD diagnosis in the future.

2.
Int Arch Occup Environ Health ; 97(4): 387-400, 2024 May.
Article in English | MEDLINE | ID: mdl-38504030

ABSTRACT

OBJECTIVE: In this pilot study on subway workers, we explored the relationships between particle exposure and oxidative stress biomarkers in exhaled breath condensate (EBC) and urine to identify the most relevant biomarkers for a large-scale study in this field. METHODS: We constructed a comprehensive occupational exposure assessment among subway workers in three distinct jobs over 10 working days, measuring daily concentrations of particulate matter (PM), their metal content and oxidative potential (OP). Individual pre- and post-shift EBC and urine samples were collected daily. Three oxidative stress biomarkers were measured in these matrices: malondialdehyde (MDA), 8-hydroxy-2'deoxyguanosine (8-OHdG) and 8-isoprostane. The association between each effect biomarker and exposure variables was estimated by multivariable multilevel mixed-effect models with and without lag times. RESULTS: The OP was positively associated with Fe and Mn, but not associated with any effect biomarkers. Concentration changes of effect biomarkers in EBC and urine were associated with transition metals in PM (Cu and Zn) and furthermore with specific metals in EBC (Ba, Co, Cr and Mn) and in urine (Ba, Cu, Co, Mo, Ni, Ti and Zn). The direction of these associations was both metal- and time-dependent. Associations between Cu or Zn and MDAEBC generally reached statistical significance after a delayed time of 12 or 24 h after exposure. Changes in metal concentrations in EBC and urine were associated with MDA and 8-OHdG concentrations the same day. CONCLUSION: Associations between MDA in both EBC and urine gave opposite response for subway particles containing Zn versus Cu. This diverting Zn and Cu pattern was also observed for 8-OHdG and urinary concentrations of these two metals. Overall, MDA and 8-OHdG responses were sensitive for same-day metal exposures in both matrices. We recommend MDA and 8-OHdG in large field studies to account for oxidative stress originating from metals in inhaled particulate matter.


Subject(s)
Railroads , Humans , Prospective Studies , Pilot Projects , Particulate Matter/analysis , Metals , Biomarkers/urine , Oxidative Stress , Breath Tests
4.
Int J Hyg Environ Health ; 256: 114316, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38159498

ABSTRACT

Exposure to ambient PM10 may increase the risk of chronic obstructive pulmonary disease (COPD) and lung function decline. We evaluated the long-term exposure to PM10 and its relationship with COPD prevalence and lung function in Parisian subway workers. Participants were randomly selected from a 15,000-subway worker cohort. Individual annual external exposure to PM10 (ePM10) was estimated using a company-specific job-exposure-matrix based on PM10 measurements conducted between 2004 and 2019 in the Parisian subway network. Mean annual inhaled PM10 exposure (iPM10) was modeled as function of ePM10 exposure, inhalation rate, and filtration efficiency of the respiratory protection used. COPD diagnosis was performed in March-May 2021 based on post-bronchodilator spirometry. The relationship between iPM10 and outcomes was assessed using logistic and linear regression models, adjusted for exposure duration and potential confounders. Amongst 254 participants with complete data, 17 were diagnosed as COPD. The mean employment duration was 23.2 ± 7.3years, with annual mean ePM10 of 71.8 ± 33.7 µg/m3 and iPM10 of 0.59 ± 0.27 µg/shift, respectively. A positive but statistically non-significant association was found for COPD prevalence with iPM10 (OR = 1.034, 95%-CI = 0.781; 1.369, per 100 ng/shift) and ePM10 (OR = 1.029, 95%-CI = 0.879; 1.207, per 10 µg/m3). No decline in lung function was associated with PM10 exposure. However, forced expiratory volume during the first second and forced vital capacity lower than normal were positively associated with exposure duration (OR = 1.125, 95%-CI = 1.004; 1.260 and OR = 1.171, 95%-CI = 0.989; 1.386 per year, respectively). Current smoking was strongly associated with COPD prevalence (OR = 6.85, 95%-CI = 1.87; 25.10) and most lung function parameters. This is the first study assessing the relationship between long-term exposure to subway PM10 and respiratory health in subway workers. The risk estimates related with subway PM10 exposure are compatible with those related to outdoor PM10 exposure in the large recent studies. Large cohorts of subway workers are necessary to confirm these findings.


Subject(s)
Air Pollution , Pulmonary Disease, Chronic Obstructive , Railroads , Humans , Particulate Matter/analysis , Pulmonary Disease, Chronic Obstructive/epidemiology , Smoking , Forced Expiratory Volume
5.
Toxics ; 11(10)2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37888686

ABSTRACT

INTRODUCTION: Health effects after long-term exposure to subway particulate matter (PM) remain unknown due to the lack of individual PM exposure data. This study aimed to apply the job exposure matrix (JEM) approach to retrospectively assess occupational exposure to PM in the Parisian subway. METHODS: Job, the line and sector of the transport network, as well as calendar period were four JEM dimensions. For each combination of these dimensions, we generated statistical models to estimate the annual average PM10 concentration using data from an exhaustive inventory of the PM measurement campaigns conducted between 2004 and 2020 in the Parisian subway and historical data from the Parisian air pollution monitoring network. The resulting JEM and its exposure estimates were critically examined by experts using the uncertainty analysis framework. RESULTS: The resulting JEM allows for the assignment of the estimated annual PM10 concentration to three types of professionals working in the subway: locomotive operators, station agents, and security guards. The estimates' precision and validity depend on the amount and quality of PM10 measurement data used in the job-, line-, and sector-specific models. Models using large amounts of personal exposure measurement data produced rather robust exposure estimates compared to models with lacunary data (i.e., in security guards). The analysis of uncertainty around the exposure estimates allows for the identification of the sources of uncertainty and parameters to be addressed in the future in order to refine and/or improve the JEM. CONCLUSIONS: The JEM approach seems relevant for the retrospective exposure assessment of subway workers. When applied to available data on PM10, it allows for the estimation of this exposure in locomotive operators and station agents with an acceptable validity. Conversely, for security guards, the current estimates have insufficient validity to recommend their use in an epidemiological study. Therefore, the current JEM should be considered as a valid prototype, which shall be further improved using more robust measurements for some jobs. This JEM can also be further refined by considering additional exposure determinants.

6.
Part Fibre Toxicol ; 19(1): 16, 2022 02 25.
Article in English | MEDLINE | ID: mdl-35216613

ABSTRACT

BACKGROUND: Underground transportation systems can contribute to the daily particulates and metal exposures for both commuter and subway workers. The redox and metabolic changes in workers exposed to such metal-rich particles have yet to be characterized. We hypothesize that the distribution of nitrosative/oxidative stress and related metabolic biomarkers in exhaled breath condensate (EBC) are modified depending on exposures. RESULTS: Particulate number and size as well as mass concentration and airborne metal content were measured in three groups of nine subway workers (station agents, locomotive operators and security guards). In parallel, pre- and post-shift EBC was collected daily during two consecutive working weeks. In this biological matrix, malondialdehyde, lactate, acetate, propionate, butyrate, formate, pyruvate, the sum of nitrite and nitrate (ΣNOx) and the ratio nitrite/nitrate as well as metals and nanoparticle concentrations was determined. Weekly evolution of the log-transformed selected biomarkers as well as their association with exposure variables was investigated using linear mixed effects models with the participant ID as random effect. The professional activity had a strong influence on the pattern of anions and malondialdehyde in EBC. The daily number concentration and the lung deposited surface area of ultrafine particles was consistently and mainly associated with nitrogen oxides variations during the work-shift, with an inhibitory effect on the ΣNOx. We observed that the particulate matter (PM) mass was associated with a decreasing level of acetate, lactate and ΣNOx during the work-shift, suggestive of a build-up of these anions during the previous night in response to exposures from the previous day. Lactate was moderately and positively associated with some metals and with the sub-micrometer particle concentration in EBC. CONCLUSIONS: These results are exploratory but suggest that exposure to subway PM could affect concentrations of nitrogen oxides as well as acetate and lactate in EBC of subway workers. The effect is modulated by the particle size and can correspond to the body's cellular responses under oxidative stress to maintain the redox and/or metabolic homeostasis.


Subject(s)
Railroads , Acetates , Anions , Biomarkers/metabolism , Breath Tests/methods , Dust , Humans , Lactic Acid , Malondialdehyde , Nitrates/metabolism , Nitrites/metabolism , Nitrogen Oxides , Particulate Matter/analysis , Particulate Matter/toxicity
7.
Environ Int ; 156: 106773, 2021 11.
Article in English | MEDLINE | ID: mdl-34425645

ABSTRACT

BACKGROUND: Air pollution in subway environments is a growing concern as it often exceeds WHO recommendations for indoor air quality. Ultrafine particles (UFP), for which there is still no regulation nor a standardized exposure monitoring method, are the strongest contributor to this pollution when the number concentration is used as exposure metric. OBJECTIVES: We aimed to assess the real-time UFP number concentration in the personal breathing zone (PBZ) of three types of underground Parisian subway professionals and analyze it using a novel Bayesian spline approach. Consecutively, we investigated the effect of job, week day, subway station, worker location, and some further events on UFP number concentrations. METHODS: The data collection procedure originated from a longitudinal study and lasted for a total duration of 6 weeks (from October 7 to November 15, 2019, i.e. two weeks per type of subway professionals). Time-series were built from the real-time particle number concentration (PNC) measured in the PBZ of professionals during their work-shifts. Complementarily, contextual information expressed as Station, Environment, and Event variables were extracted from activity logbooks completed for every work-shift. A Bayesian spline approach was applied to model the PNC within a Bayesian framework as a function of the mentioned contextual information. RESULTS: Overall, the Bayesian spline method suited a real-time personal PNC data modeling approach. The model enabled estimating the differences in UFP exposure between subway professionals, stations, and various locations. Our results suggest a higher PNC closer to the subway tracks, with the highest PNC on subway station platforms. Studied event and week day variables had a lesser influence. CONCLUSION: It was shown that the Bayesian spline method is suitable to investigate individual exposure to UFP in underground subway settings. This method is informative for better documenting the magnitude and variability of UFP exposure, and for understanding the determinants in view of further regulation and control of this exposure.


Subject(s)
Air Pollutants , Railroads , Air Pollutants/analysis , Bayes Theorem , Environmental Monitoring , Longitudinal Studies , Particulate Matter/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...